Extraglycemic effects of SGLT2 inhibitors on endothelial function and inflammation: A literature review
DOI:
https://doi.org/10.33448/rsd-v14i12.50468Keywords:
Coronary Artery Disease, Vascular Endothelium, Mitochondrial Dysfunction, Sodium-Glucose Transporter 2 Inhibitors, Myocardial Infarction.Abstract
Sodium–glucose cotransporter 2 (SGLT2) inhibitors have demonstrated cardiovascular benefits that extend beyond glycemic control, particularly in the context of coronary artery disease (CAD). This article synthesizes mechanistic and clinical evidence on SGLT2 inhibitors in coronary artery disease (CAD), with emphasis on inflammation, endothelial function, mitochondrial homeostasis, oxidative stress, and cardiac remodeling. A narrative literature review was conducted using the PubMed/MEDLINE, Embase, and Scopus databases (2015–2025), including experimental studies (in vitro/in vivo), clinical trials, and cohort studies published in Portuguese, English, or Spanish. Case reports and studies with insufficient clinical information were excluded. No protocol was registered; PRISMA and formal risk-of-bias assessment were not applied. Findings were organized thematically (molecular mechanisms; inflammation/endothelium; mitochondria; oxidative stress; clinical relevance to CAD). SGLT2 inhibitors lower pro-inflammatory mediators (e.g., TNF-α, IL-6, IL-1β), inhibit NLRP3 inflammasome activation, and favor M2 macrophage polarization. They preserve endothelial integrity—via AMPKα1/ULK1/FUNDC1-dependent mitophagy, reduced ROS, and increased NO bioavailability—and modulate cardiomyocyte metabolism, impacting infarct size and remodeling in experimental models. Clinically, the evidence supports extraglycemic benefits, particularly in patients with type 2 diabetes mellitus (T2DM) and cardiovascular risk. Convergent anti-inflammatory, antioxidant, and endothelial/mitochondrial effects support an adjunctive role of SGLT2 inhibitors in high-risk CAD profiles, while underscoring the need for randomized trials targeting CAD/MI-specific outcomes.
References
Bocchi, E. A., Biolo, A., Moura, L. Z., Neto, J. A. F., Montenegro, C. E. L., & de Albuquerque, D. C. (2021). Emerging topics in heart failure: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) in hf. Arquivos Brasileiros de Cardiologia, 116(2), 355–358. https://doi.org/10.36660/ABC.20210031.
Byrne, N. J., Matsumura, N., Maayah, Z. H., Ferdaoussi, M., Takahara, S., Darwesh, A. M., Levasseur, J. L., Jahng, J. W. S., Vos, D., Parajuli, N., El-Kadi, A. O. S., Braam, B., Young, M. E., Verma, S., Light, P. E., Sweeney, G., Seubert, J. M., & Dyck, J. R. B. (2020). Empagliflozin Blunts Worsening Cardiac Dysfunction Associated with Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circulation: Heart Failure, 13(1), E006277. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277.
Cai, C., Guo, Z., Chang, X., Li, Z., Wu, F., He, J., Cao, T., Wang, K., Shi, N., Zhou, H., Toan, S., Muid, D., & Tan, Y. (2022). Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biology, 52. https://doi.org/10.1016/J.REDOX.2022.102288.
Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., Li, H., & Jiang, T. (2023). Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Frontiers in Pharmacology, 14. https://doi.org/10.3389/FPHAR.2023.1078205.
Cojocaru, K. A., Luchian, I., Goriuc, A., Antoci, L. M., Ciobanu, C. G., Popescu, R., Vlad, C. E., Blaj, M., & Foia, L. G. (2023). Mitochondrial Dysfunction, Oxidative Stress, and Therapeutic Strategies in Diabetes, Obesity, and Cardiovascular Disease. Antioxidants, 12(3). https://doi.org/10.3390/ANTIOX12030658.
Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac Metabolism in Heart Failure - Implications beyond ATP production. Circulation Research, 113(6), 709. https://doi.org/10.1161/CIRCRESAHA.113.300376.
Hsieh, P.-L. ;, Chu, P.-M. ;, Cheng, H.-C. ;, Huang, Y.-T. ;, Chou, W.-C. ;, Tsai, K.-L. ;, Chan, S.-H., Hsieh, P.-L., Chu, P.-M., Cheng, H.-C., Huang, Y.-T., Chou, W.-C., Tsai, K.-L., & Chan, S.-H. (2022). Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. International Journal of Molecular Sciences 2022, Vol. 23, Page 10146, 23(17), 10146. https://doi.org/10.3390/IJMS231710146.
Huang, X., Yan, H., Xu, Z., Yang, B., Luo, P., & He, Q. (2025). The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Communication and Signaling 2025 23:1, 23(1), 1–20. https://doi.org/10.1186/S12964-025-02135-W.
Jia, D., Zhang, J., Nie, J., Andersen, J. P., Rendon, S., Zheng, Y., Liu, X., Tian, Z., & Shi, Y. (2021). Cardiolipin remodeling by ALCAT1 links hypoxia to coronary artery disease by promoting mitochondrial dysfunction. Molecular Therapy, 29(12), 3498–3511. https://doi.org/10.1016/j.ymthe.2021.06.007.
Jiang, M., Xie, X., Cao, F., & Wang, Y. (2021). Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Frontiers in Cardiovascular Medicine, 8, 789267. https://doi.org/10.3389/FCVM.2021.789267/XML
Kim, S. R., Lee, S. G., Kim, S. H., Kim, J. H., Choi, E., Cho, W., Rim, J. H., Hwang, I., Lee, C. J., Lee, M., Oh, C. M., Jeon, J. Y., Gee, H. Y., Kim, J. H., Lee, B. W., Kang, E. S., Cha, B. S., Lee, M. S., Yu, J. W., … Lee, Y. ho. (2020). SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nature Communications 2020 11:1, 11(1), 1–11. https://doi.org/10.1038/s41467-020-15983-6.
Lahera, V., de las Heras, N., López-Farré, A., Manucha, W., & Ferder, L. (2017). Role of Mitochondrial Dysfunction in Hypertension and Obesity. Current Hypertension Reports, 19(2). https://doi.org/10.1007/S11906-017-0710-9.
Li, X., Wang, M., Kalina, J. O., Preckel, B., Hollmann, M. W., Albrecht, M., Zuurbier, C. J., & Weber, N. C. (2024). Empagliflozin prevents oxidative stress in human coronary artery endothelial cells via the NHE/PKC/NOX axis. Redox Biology, 69. https://doi.org/10.1016/J.REDOX.2023.102979.
Liu, Y., Wu, M., Xu, B., & Kang, L. (2021). Empagliflozin alleviates atherosclerosis progression by inhibiting inflammation and sympathetic activity in a normoglycemic mouse model. Journal of Inflammation Research, 14, 2277–2287. https://doi.org/10.2147/JIR.S309427.
Makrecka-Kuka, M., Korzh, S., Videja, M., Vilks, K., Cirule, H., Kuka, J., Dambrova, M., & Liepinsh, E. (2020). Empagliflozin Protects Cardiac Mitochondrial Fatty Acid Metabolism in a Mouse Model of Diet-Induced Lipid Overload. Cardiovascular Drugs and Therapy, 34(6), 791–797. https://doi.org/10.1007/S10557-020-06989-9.
Malakar, A. K., Choudhury, D., Halder, B., Paul, P., Uddin, A., & Chakraborty, S. (2019). A review on coronary artery disease, its risk factors, and therapeutics. Journal of Cellular Physiology, 234(10), 16812–16823. https://doi.org/10.1002/JCP.28350.
Mone, P., Varzideh, F., Jankauskas, S. S., Pansini, A., Lombardi, A., Frullone, S., & Santulli, G. (2022). SGLT2 Inhibition via Empagliflozin Improves Endothelial Function and Reduces Mitochondrial Oxidative Stress: Insights from Frail Hypertensive and Diabetic Patients. Hypertension, 79(8), 1633–1643. https://doi.org/10.1161/HYPERTENSIONAHA.122.19586.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Oshima, H., Miki, T., Kuno, A., Mizuno, M., Sato, T., Tanno, M., Yano, T., Nakata, K., Kimura, Y., Abe, K., Ohwada, W., & Miura, T. (2019). Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. Journal of Pharmacology and Experimental Therapeutics, 368(3), 524–534. https://doi.org/10.1124/JPET.118.253666.
Rosenwasser, R. F., Sultan, S., Sutton, D., Choksi, R., & Epstein, B. J. (2013). SGLT-2 inhibitors and their potential in the treatment of diabetes. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 6, 453–467. https://doi.org/10.2147/DMSO.S34416.
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.
Rykova, E. Y., Klimontov, V. V., Shmakova, E., Korbut, A. I., Merkulova, T. I., & Kzhyshkowska, J. (2025). Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. International Journal of Molecular Sciences 2025, Vol. 26, Page 1670, 26(4), 1670. https://doi.org/10.3390/IJMS26041670.
Scisciola, L., Cataldo, V., Taktaz, F., Fontanella, R. A., Pesapane, A., Ghosh, P., Franzese, M., Puocci, A., De Angelis, A., Sportiello, L., Marfella, R., & Barbieri, M. (2022). Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Frontiers in Cardiovascular Medicine, 9, 1008922. https://doi.org/10.3389/FCVM.2022.1008922/EPUB.
Tang, H., Cui, W., Li, D., Wang, T., Zhang, J., Zhai, S., & Song, Y. (2017). Sodium-glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes, Obesity and Metabolism, 19(1), 142–147. https://doi.org/10.1111/DOM.12785.
Vallon, V. (2024). How can inhibition of glucose and sodium transport in the early proximal tubule protect the cardiorenal system? Nephrology Dialysis Transplantation, 39(10), 1565–1573. https://doi.org/10.1093/ndt/gfae060.
Vallon, V., & Verma, S. (2021). Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annual Review of Physiology, 83, 503–528. https://doi.org/10.1146/ANNUREV-PHYSIOL-031620-095920.
Virani, S. S., Newby, L. K., Arnold, S. V., Bittner, V., Brewer, L. P. C., Demeter, S. H., Dixon, D. L., Fearon, W. F., Hess, B., Johnson, H. M., Kazi, D. S., Kolte, D., Kumbhani, D. J., LoFaso, J., Mahtta, D., Mark, D. B., Minissian, M., Navar, A. M., Patel, A. R., … Williams, M. S. (2023). 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. In Journal of the American College of Cardiology (Vol. 82, Issue 9). https://doi.org/10.1016/j.jacc.2023.04.003.
Vrints, C., Andreotti, F., Koskinas, K. C., Rossello, X., Adamo, M., Ainslie, J., Banning, A. P., Budaj, A., Buechel, R. R., Chiariello, G. A., Chieffo, A., Christodorescu, R. M., Deaton, C., Doenst, T., Jones, H. W., Kunadian, V., Mehilli, J., Milojevic, M., Piek, J. J., … Shek, A. B. (2024). 2024 ESC Guidelines for the management of chronic coronary syndromes. European Heart Journal, 45(36), 3415–3537. https://doi.org/10.1093/EURHEARTJ/EHAE177.
Wang, C. C., Li, Y., Qian, X. Q., Zhao, H., Wang, D., Zuo, G. X., & Wang, K. (2022). Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway. Journal of Drug Targeting, 30(8), 858–872. https://doi.org/10.1080/1061186X.2022.2064479.
Wilson, C., Lee, M. D., Buckley, C., Zhang, X., & McCarron, J. G. (2023). Mitochondrial ATP Production is Required for Endothelial Cell Control of Vascular Tone. Function, 4(2). https://doi.org/10.1093/FUNCTION/ZQAC063.
Yan, P., Song, X., Tran, J., Zhou, R., Cao, X., Zhao, G., & Yuan, H. (2022). Dapagliflozin Alleviates Coxsackievirus B3-induced Acute Viral Myocarditis by Regulating the Macrophage Polarization Through Stat3-related Pathways. Inflammation, 45(5), 2078–2090. https://doi.org/10.1007/S10753-022-01677-2.
Zhou, Y., Tai, S., Zhang, N., Fu, L., & Wang, Y. (2023). Dapagliflozin prevents oxidative stress-induced endothelial dysfunction via sirtuin 1 activation. Biomedicine and Pharmacotherapy, 165. https://doi.org/10.1016/j.biopha.2023.115213.
Zuurbier, C. J., Baartscheer, A., Schumacher, C. A., Fiolet, J. W. T., & Coronel, R. (2021). Sodium-glucose co-transporter 2 inhibitor empagliflozin inhibits the cardiac Na+/H+exchanger 1: Persistent inhibition under various experimental conditions. Cardiovascular Research, 117(14), 2699–2701. https://doi.org/10.1093/CVR/CVAB129.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bruna dos Santos Serra de Alencar, Lucas Diniz Bretas, Bruna Torres de Almeida, Erika Dornellas Staib, Giovana Brilhante Palacios, Vanessa Estato

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
