Efectos extraglucémicos de los inhibidores de SGLT2 sobre la función endotelial y la inflamación: Una revisión de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i12.50468

Palabras clave:

Inhibidores de SGLT2, Enfermedad de la Arteria Coronaria, Disfunción Endotelial, Enfermedades Mitocondriales, Infarto del Miocardio.

Resumen

Los inhibidores del cotransportador sodio–glucosa tipo 2 (SGLT2) han demostrado beneficios cardiovasculares que van más allá del control glucémico, particularmente en el contexto de la enfermedad arterial coronaria (EAC). Este artículo sintetiza evidencias mecanísticas y clínicas sobre los inhibidores del cotransportador sodio–glucosa tipo 2 (SGLT2) en la enfermedad arterial coronaria (EAC), con énfasis en la inflamación, la función endotelial, la homeostasis mitocondrial, el estrés oxidativo y el remodelado cardíaco. Se realizó una revisión narrativa de la literatura en las bases de datos PubMed/MEDLINE, Embase y Scopus (2015–2025), incluyendo estudios experimentales (in vitro/in vivo), ensayos clínicos y estudios de cohortes publicados en portugués, inglés o español. Se excluyeron reportes de caso y estudios con información clínica insuficiente. No hubo protocolo registrado; no se aplicó PRISMA ni una evaluación formal del riesgo de sesgo. La síntesis fue temática (mecanismos moleculares; inflamación/endotelio; mitocondria; estrés oxidativo; relevancia clínica para EAC). Los inhibidores de SGLT2 reducen mediadores proinflamatorios (p. ej., TNF-α, IL-6, IL-1β), inhiben la activación del inflamasoma NLRP3 y favorecen la polarización M2 de macrófagos. Preservan la integridad endotelial—mediante mitofagia dependiente de AMPKα1/ULK1/FUNDC1, menor ROS y mayor biodisponibilidad de NO—y modulan el metabolismo del cardiomiocito, con impacto en el tamaño del infarto y la remodelación en modelos experimentales. En el ámbito clínico, la evidencia respalda beneficios extraglucémicos, especialmente en pacientes con diabetes mellitus tipo 2 (DM2) y riesgo cardiovascular. Efectos convergentes antiinflamatorios, antioxidantes y endoteliales/mitocondriales respaldan un papel adyuvante de los inhibidores de SGLT2 en perfiles de alto riesgo con EAC, y subrayan la necesidad de ensayos aleatorizados centrados en desenlaces específicos de EAC/IM.

Referencias

Bocchi, E. A., Biolo, A., Moura, L. Z., Neto, J. A. F., Montenegro, C. E. L., & de Albuquerque, D. C. (2021). Emerging topics in heart failure: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) in hf. Arquivos Brasileiros de Cardiologia, 116(2), 355–358. https://doi.org/10.36660/ABC.20210031.

Byrne, N. J., Matsumura, N., Maayah, Z. H., Ferdaoussi, M., Takahara, S., Darwesh, A. M., Levasseur, J. L., Jahng, J. W. S., Vos, D., Parajuli, N., El-Kadi, A. O. S., Braam, B., Young, M. E., Verma, S., Light, P. E., Sweeney, G., Seubert, J. M., & Dyck, J. R. B. (2020). Empagliflozin Blunts Worsening Cardiac Dysfunction Associated with Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circulation: Heart Failure, 13(1), E006277. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277.

Cai, C., Guo, Z., Chang, X., Li, Z., Wu, F., He, J., Cao, T., Wang, K., Shi, N., Zhou, H., Toan, S., Muid, D., & Tan, Y. (2022). Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biology, 52. https://doi.org/10.1016/J.REDOX.2022.102288.

Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., Li, H., & Jiang, T. (2023). Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Frontiers in Pharmacology, 14. https://doi.org/10.3389/FPHAR.2023.1078205.

Cojocaru, K. A., Luchian, I., Goriuc, A., Antoci, L. M., Ciobanu, C. G., Popescu, R., Vlad, C. E., Blaj, M., & Foia, L. G. (2023). Mitochondrial Dysfunction, Oxidative Stress, and Therapeutic Strategies in Diabetes, Obesity, and Cardiovascular Disease. Antioxidants, 12(3). https://doi.org/10.3390/ANTIOX12030658.

Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac Metabolism in Heart Failure - Implications beyond ATP production. Circulation Research, 113(6), 709. https://doi.org/10.1161/CIRCRESAHA.113.300376.

Hsieh, P.-L. ;, Chu, P.-M. ;, Cheng, H.-C. ;, Huang, Y.-T. ;, Chou, W.-C. ;, Tsai, K.-L. ;, Chan, S.-H., Hsieh, P.-L., Chu, P.-M., Cheng, H.-C., Huang, Y.-T., Chou, W.-C., Tsai, K.-L., & Chan, S.-H. (2022). Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. International Journal of Molecular Sciences 2022, Vol. 23, Page 10146, 23(17), 10146. https://doi.org/10.3390/IJMS231710146.

Huang, X., Yan, H., Xu, Z., Yang, B., Luo, P., & He, Q. (2025). The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Communication and Signaling 2025 23:1, 23(1), 1–20. https://doi.org/10.1186/S12964-025-02135-W.

Jia, D., Zhang, J., Nie, J., Andersen, J. P., Rendon, S., Zheng, Y., Liu, X., Tian, Z., & Shi, Y. (2021). Cardiolipin remodeling by ALCAT1 links hypoxia to coronary artery disease by promoting mitochondrial dysfunction. Molecular Therapy, 29(12), 3498–3511. https://doi.org/10.1016/j.ymthe.2021.06.007.

Jiang, M., Xie, X., Cao, F., & Wang, Y. (2021). Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Frontiers in Cardiovascular Medicine, 8, 789267. https://doi.org/10.3389/FCVM.2021.789267/XML

Kim, S. R., Lee, S. G., Kim, S. H., Kim, J. H., Choi, E., Cho, W., Rim, J. H., Hwang, I., Lee, C. J., Lee, M., Oh, C. M., Jeon, J. Y., Gee, H. Y., Kim, J. H., Lee, B. W., Kang, E. S., Cha, B. S., Lee, M. S., Yu, J. W., … Lee, Y. ho. (2020). SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nature Communications 2020 11:1, 11(1), 1–11. https://doi.org/10.1038/s41467-020-15983-6.

Lahera, V., de las Heras, N., López-Farré, A., Manucha, W., & Ferder, L. (2017). Role of Mitochondrial Dysfunction in Hypertension and Obesity. Current Hypertension Reports, 19(2). https://doi.org/10.1007/S11906-017-0710-9.

Li, X., Wang, M., Kalina, J. O., Preckel, B., Hollmann, M. W., Albrecht, M., Zuurbier, C. J., & Weber, N. C. (2024). Empagliflozin prevents oxidative stress in human coronary artery endothelial cells via the NHE/PKC/NOX axis. Redox Biology, 69. https://doi.org/10.1016/J.REDOX.2023.102979.

Liu, Y., Wu, M., Xu, B., & Kang, L. (2021). Empagliflozin alleviates atherosclerosis progression by inhibiting inflammation and sympathetic activity in a normoglycemic mouse model. Journal of Inflammation Research, 14, 2277–2287. https://doi.org/10.2147/JIR.S309427.

Makrecka-Kuka, M., Korzh, S., Videja, M., Vilks, K., Cirule, H., Kuka, J., Dambrova, M., & Liepinsh, E. (2020). Empagliflozin Protects Cardiac Mitochondrial Fatty Acid Metabolism in a Mouse Model of Diet-Induced Lipid Overload. Cardiovascular Drugs and Therapy, 34(6), 791–797. https://doi.org/10.1007/S10557-020-06989-9.

Malakar, A. K., Choudhury, D., Halder, B., Paul, P., Uddin, A., & Chakraborty, S. (2019). A review on coronary artery disease, its risk factors, and therapeutics. Journal of Cellular Physiology, 234(10), 16812–16823. https://doi.org/10.1002/JCP.28350.

Mone, P., Varzideh, F., Jankauskas, S. S., Pansini, A., Lombardi, A., Frullone, S., & Santulli, G. (2022). SGLT2 Inhibition via Empagliflozin Improves Endothelial Function and Reduces Mitochondrial Oxidative Stress: Insights from Frail Hypertensive and Diabetic Patients. Hypertension, 79(8), 1633–1643. https://doi.org/10.1161/HYPERTENSIONAHA.122.19586.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.

Oshima, H., Miki, T., Kuno, A., Mizuno, M., Sato, T., Tanno, M., Yano, T., Nakata, K., Kimura, Y., Abe, K., Ohwada, W., & Miura, T. (2019). Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats. Journal of Pharmacology and Experimental Therapeutics, 368(3), 524–534. https://doi.org/10.1124/JPET.118.253666.

Rosenwasser, R. F., Sultan, S., Sutton, D., Choksi, R., & Epstein, B. J. (2013). SGLT-2 inhibitors and their potential in the treatment of diabetes. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 6, 453–467. https://doi.org/10.2147/DMSO.S34416.

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Rykova, E. Y., Klimontov, V. V., Shmakova, E., Korbut, A. I., Merkulova, T. I., & Kzhyshkowska, J. (2025). Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. International Journal of Molecular Sciences 2025, Vol. 26, Page 1670, 26(4), 1670. https://doi.org/10.3390/IJMS26041670.

Scisciola, L., Cataldo, V., Taktaz, F., Fontanella, R. A., Pesapane, A., Ghosh, P., Franzese, M., Puocci, A., De Angelis, A., Sportiello, L., Marfella, R., & Barbieri, M. (2022). Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Frontiers in Cardiovascular Medicine, 9, 1008922. https://doi.org/10.3389/FCVM.2022.1008922/EPUB.

Tang, H., Cui, W., Li, D., Wang, T., Zhang, J., Zhai, S., & Song, Y. (2017). Sodium-glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes, Obesity and Metabolism, 19(1), 142–147. https://doi.org/10.1111/DOM.12785.

Vallon, V. (2024). How can inhibition of glucose and sodium transport in the early proximal tubule protect the cardiorenal system? Nephrology Dialysis Transplantation, 39(10), 1565–1573. https://doi.org/10.1093/ndt/gfae060.

Vallon, V., & Verma, S. (2021). Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annual Review of Physiology, 83, 503–528. https://doi.org/10.1146/ANNUREV-PHYSIOL-031620-095920.

Virani, S. S., Newby, L. K., Arnold, S. V., Bittner, V., Brewer, L. P. C., Demeter, S. H., Dixon, D. L., Fearon, W. F., Hess, B., Johnson, H. M., Kazi, D. S., Kolte, D., Kumbhani, D. J., LoFaso, J., Mahtta, D., Mark, D. B., Minissian, M., Navar, A. M., Patel, A. R., … Williams, M. S. (2023). 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. In Journal of the American College of Cardiology (Vol. 82, Issue 9). https://doi.org/10.1016/j.jacc.2023.04.003.

Vrints, C., Andreotti, F., Koskinas, K. C., Rossello, X., Adamo, M., Ainslie, J., Banning, A. P., Budaj, A., Buechel, R. R., Chiariello, G. A., Chieffo, A., Christodorescu, R. M., Deaton, C., Doenst, T., Jones, H. W., Kunadian, V., Mehilli, J., Milojevic, M., Piek, J. J., … Shek, A. B. (2024). 2024 ESC Guidelines for the management of chronic coronary syndromes. European Heart Journal, 45(36), 3415–3537. https://doi.org/10.1093/EURHEARTJ/EHAE177.

Wang, C. C., Li, Y., Qian, X. Q., Zhao, H., Wang, D., Zuo, G. X., & Wang, K. (2022). Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway. Journal of Drug Targeting, 30(8), 858–872. https://doi.org/10.1080/1061186X.2022.2064479.

Wilson, C., Lee, M. D., Buckley, C., Zhang, X., & McCarron, J. G. (2023). Mitochondrial ATP Production is Required for Endothelial Cell Control of Vascular Tone. Function, 4(2). https://doi.org/10.1093/FUNCTION/ZQAC063.

Yan, P., Song, X., Tran, J., Zhou, R., Cao, X., Zhao, G., & Yuan, H. (2022). Dapagliflozin Alleviates Coxsackievirus B3-induced Acute Viral Myocarditis by Regulating the Macrophage Polarization Through Stat3-related Pathways. Inflammation, 45(5), 2078–2090. https://doi.org/10.1007/S10753-022-01677-2.

Zhou, Y., Tai, S., Zhang, N., Fu, L., & Wang, Y. (2023). Dapagliflozin prevents oxidative stress-induced endothelial dysfunction via sirtuin 1 activation. Biomedicine and Pharmacotherapy, 165. https://doi.org/10.1016/j.biopha.2023.115213.

Zuurbier, C. J., Baartscheer, A., Schumacher, C. A., Fiolet, J. W. T., & Coronel, R. (2021). Sodium-glucose co-transporter 2 inhibitor empagliflozin inhibits the cardiac Na+/H+exchanger 1: Persistent inhibition under various experimental conditions. Cardiovascular Research, 117(14), 2699–2701. https://doi.org/10.1093/CVR/CVAB129.

Descargas

Publicado

2025-12-28

Número

Sección

Revisiones

Cómo citar

Efectos extraglucémicos de los inhibidores de SGLT2 sobre la función endotelial y la inflamación: Una revisión de la literatura. Research, Society and Development, [S. l.], v. 14, n. 12, p. e187141250468, 2025. DOI: 10.33448/rsd-v14i12.50468. Disponível em: https://rsdjournal.org/rsd/article/view/50468. Acesso em: 2 jan. 2026.