Benchtop nuclear magnetic resonance based on Halbach arrays applied to agriculture: A literature review
DOI:
https://doi.org/10.33448/rsd-v15i2.50520Keywords:
Low-field Nuclear Magnetic Resonance, Halbach magnetic arrays, Non-destructive analysis, Agricultural and food applications.Abstract
Low-field Nuclear Magnetic Resonance (NMR) based on permanent magnets has emerged as a promising alternative to conventional high-field systems, especially for applications outside the laboratory environment. In this context, Halbach-type magnet arrays stand out for their ability to generate intense, homogeneous, and self-shielded magnetic fields in compact devices with low operating costs. The objective of this article is to critically review the state of the art of benchtop NMR based on Halbach arrays and its applications in the agricultural and agri-food sector. The methodology adopted consisted of a systematic review of the scientific literature published in recent decades, covering topics ranging from the physical fundamentals of low-field NMR, principles of relaxometry and Halbach magnet engineering, to advanced strategies for field homogenization, thermal stability, and signal processing. Relevant applications in phenotyping and in vivo plant physiology, soil water monitoring, seed and grain quality assessment, meat science, food quality control, and nutrient and biofuel monitoring are discussed. The analyzed studies demonstrate that Halbach-based NMR sensors enable rapid, non-destructive, and volumetric analyses directly in the field or in processing lines, overcoming limitations of surface optical methods. It is concluded that the integration of Halbach arrays with advanced signal processing techniques, chemometrics, and artificial intelligence represents a strategic path for the democratization of NMR and for the advancement of precision agriculture and agro-industrial quality control.
References
Anferova, S., Anferov, V., Arnold, J., Talnishnikh, E., Voda, M. A., Kupferschläger, K., Blümler, P., Clauser, C., & Blümich, B. (2007). Improved Halbach sensor for NMR scanning of drill cores. Magnetic Resonance Imaging, 25(4), 474–480. https://doi.org/10.1016/j.mri.2006.11.016
Balthazar, C. F., Guimarães, J. T., Rocha, R. S., Pimentel, T. C., Neto, R. P. C., Tavares, M. I. B., Graça, J. S., Alves Filho, E. G., Freitas, M. Q., Esmerino, E. A., Granato, D., Rodrigues, S., Raices, R. S. L., Silva, M. C., Sant’Ana, A. S., & Cruz, A. G. (2021). Nuclear magnetic resonance as an analytical tool for monitoring the quality and authenticity of dairy foods. Em Trends in Food Science and Technology (Vol. 108, p. 84–91). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.12.011
Blümich, B. (2019). Low-field and benchtop NMR. Journal of Magnetic Resonance, 306, 27–35. https://doi.org/10.1016/j.jmr.2019.07.030
Blümler, P., & Soltner, H. (2023). Practical Concepts for Design, Construction and Application of Halbach Magnets in Magnetic Resonance. Em Applied Magnetic Resonance (Vol. 54, Números 11–12, p. 1701–1739). Springer. https://doi.org/10.1007/s00723-023-01602-2
Borba, K. R., Oldoni, F. C. A., Monaretto, T., Colnago, L. A., & Ferreira, M. D. (2021). Selection of industrial tomatoes using TD-NMR data and computational classification methods. Microchemical Journal, 164. https://doi.org/10.1016/j.microc.2021.106048
Castaing-Cordier, T., Bouillaud, D., Farjon, J., & Giraudeau, P. (2021). Recent advances in benchtop NMR spectroscopy and its applications. Em Annual Reports on NMR Spectroscopy (Vol. 103, p. 191–258). Academic Press Inc. https://doi.org/10.1016/bs.arnmr.2021.02.003
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P. & Mota, M. S. (2020). Tipos de revisão de literatura. Journal of Nursing and Health. J. nurs. health. 10(n.esp.):e20104031.
Chen, X., Li, C., Wu, L., Yan, S., Qi, L., Chen, J., & Chen, W. (2025). Low-field NMR for polymer science. Em Giant (Vol. 24). Elsevier B.V. https://doi.org/10.1016/j.giant.2025.100364
Clarke, D. A., Hogendoorn, W., Penn, A., & Serial, M. R. (2025). Magnetic resonance imaging in granular flows: An overview of recent advances. Particuology, 101, 18–32. https://doi.org/10.1016/j.partic.2023.08.007
Colnago, L. A., Wiesman, Z., Pages, G., Musse, M., Monaretto, T., Windt, C. W., & Rondeau-Mouro, C. (2021). Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. Journal of Magnetic Resonance, 323. https://doi.org/10.1016/j.jmr.2020.106899
Danieli, E., Perlo, J., Blümich, B., & Casanova, F. (2010). Small magnets for portable NMR spectrometers. Angewandte Chemie - International Edition, 49(24), 4133–4135. https://doi.org/10.1002/anie.201000221
Fernandes, J. M. B., Vieira, L. T. & Castelhano, M. V. C. (2023). Revisão narrativa enquanto metodologia científica significativa: reflexões técnico-formativas. REDES – Revista Educacional da Sucesso. 3(1), 1-7. ISSN: 2763-6704.
Galvan, D., de Aguiar, L. M., Bona, E., Marini, F., & Killner, M. H. M. (2023). Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Em Analytica Chimica Acta (Vol. 1273). Elsevier B.V. https://doi.org/10.1016/j.aca.2023.341495
Gao, M., Luo, S., Zhu, L., Xiao, L., Liu, H., Liao, G., Lv, X., Chen, H., & Wang, Y. (2025). Easy-to-implement passive shimming approach of Halbach magnet for low-field NMR measurement. Journal of Magnetic Resonance, 376. https://doi.org/10.1016/j.jmr.2025.107887
Giberson, J., Scicluna, J., Legge, N., & Longstaffe, J. (2021). Developments in benchtop NMR spectroscopy 2015–2020. Em Annual Reports on NMR Spectroscopy (Vol. 102, p. 153–246). Academic Press Inc. https://doi.org/10.1016/bs.arnmr.2020.10.006
Gil, A. C. (2017). Como elaborar um projeto de pesquisa. Editora Atlas.
Grootveld, M., Percival, B., Gibson, M., Osman, Y., Edgar, M., Molinari, M., Mather, M. L., Casanova, F., & Wilson, P. B. (2019). Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis. Em Analytica Chimica Acta (Vol. 1067, p. 11–30). Elsevier B.V. https://doi.org/10.1016/j.aca.2019.02.026
Huang, S., Algarín, J. M., Alonso, J., Anieyrudh, R., Borreguero, J., Bschorr, F., Cassidy, P., Choo, W. M., Corcos, D., Guallart-Naval, T., Han, H. J., Igwe, K. C., Kang, J., Li, J., Littin, S., Liu, J., Rodriguez, G. G., Solomon, E., Tan, L. K., … Blümich, B. (2025). Experience of how to build an MRI machine from scratch. Em Progress in Nuclear Magnetic Resonance Spectroscopy (Vols. 150–151). Elsevier B.V. https://doi.org/10.1016/j.pnmrs.2025.10157
4
Janvrin, W., Martin, J., Hancock, D., Varillas, A., Downey, A. R. J., Pellechia, P. J., Satme, J., & Won, S. H. (2025). Open-source compact time-domain hydrogen (1H) NMR System for Field Deployment. HardwareX, 22. https://doi.org/10.1016/j.ohx.2025.e00651
Keating, K., Walsh, D. O., & Grunewald, E. (2020). The effect of magnetic susceptibility and magnetic field strength on porosity estimates determined from low-field nuclear magnetic resonance. Journal of Applied Geophysics, 179. https://doi.org/10.1016/j.jappgeo.2020.104096
Kirtil, E., Cikrikci, S., McCarthy, M. J., & Oztop, M. H. (2017). Recent advances in time domain NMR & MRI sensors and their food applications. Em Current Opinion in Food Science (Vol. 17, p. 9–15). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2017.07.005
Kock, F. V. C., Machado, M. P., Athayde, G. P. B., Colnago, L. A., & Barbosa, L. L. (2018). Quantification of paramagnetic ions in solution using time domain NMR. PROS and CONS to optical emission spectrometry method. Microchemical Journal, 137, 204–207. https://doi.org/10.1016/j.microc.2017.10.013
Lechthaler, S., Robert, E. M. R., Tonné, N., Prusova, A., Gerkema, E., Van As, H., Koedam, N., & Windt, C. W. (2016). Rhizophoraceae mangrove saplings use hypocotyl and leaf water storage capacity to cope with soil water salinity changes. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00895
Mandal, S. (2026a). Advanced magnetic resonance imaging. Em Sensors, Circuits, and Systems for Scientific Instruments (p. 595–638). Elsevier. https://doi.org/10.1016/b978-0-44-334719-1.00018-2
Mandal, S. (2026b). Magnetic resonance imaging. Em Sensors, Circuits, and Systems for Scientific Instruments (p. 505–593). Elsevier. https://doi.org/10.1016/B978-0-44-334719-1.00017-0
McCarney, E. R., McGilchrist, P., Stewart, S. M., & Dykstra, R. (2025). Fast non-destructive measurement of intramuscular fat in Australian beef and lamb using nuclear magnetic resonance (NMR) technologies. Meat Science, 220. https://doi.org/10.1016/j.meatsci.2024.109706
Melchinger, A. E., Munder, S., Mauch, F. J., Mirdita, V., Böhm, J., & Müller, J. (2017). High-throughput platform for automated sorting and selection of single seeds based on time-domain nuclear magnetic resonance (TD-NMR) measurement of oil content. Biosystems Engineering, 164, 213–220. https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.10.011
Miao, R., Wang, Y., Wang, Q., Zheng, Y., He, X., Ren, C., & Jiang, C. (2024). Forward modeling of single-sided magnetic resonance and evaluation of T2 fitting error based on geometric analytical method. Computers and Geosciences, 192. https://doi.org/10.1016/j.cageo.2024.105705
Michal, C. A. (2020). Low-cost low-field NMR and MRI: Instrumentation and applications. Journal of Magnetic Resonance, 319. https://doi.org/10.1016/j.jmr.2020.106800
Oligschläger, D., Rehorn, C., Lehmkuhl, S., Adams, M., Adams, A., & Blümich, B. (2017). A size-adjustable radiofrequency coil for investigating plants in a Halbach magnet. Journal of Magnetic Resonance, 278, 80–87. https://doi.org/10.1016/j.jmr.2017.03.010
Parker, A. J., Zia, W., Rehorn, C. W. G., & Blümich, B. (2016). Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections. Journal of Magnetic Resonance, 265, 83–89. https://doi.org/10.1016/j.jmr.2016.01.014
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Peng, B., Yang, J., Wang, Y., Zhao, L., Yang, X., Zheng, J., & Xu, Y. (2025). Design of a thermal management system for halbach magnets in low-field NMR instruments. Applied Thermal Engineering, 280. https://doi.org/10.1016/j.applthermaleng.2025.128026
Raich, H., & Blümler, P. (2004). Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 23(1), 16–25. https://doi.org/10.1002/cmr.b.20018
Rudszuck, T., Nirschl, H., & Guthausen, G. (2021). Perspectives in process analytics using low field NMR. Journal of Magnetic Resonance, 323. https://doi.org/10.1016/j.jmr.2020.106897
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.
Santos, P. M., Pereira-Filho, E. R., & Colnago, L. A. (2016). Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR). Microchemical Journal, 124, 15–19. https://doi.org/10.1016/j.microc.2015.07.013
Shen, S., Guo, P., Wu, J., Ding, Y., Chen, F., Meng, F., & Xu, Z. (2019). Optimized inside-out magnetic resonance probe for soil moisture measuring in situ. Journal of Magnetic Resonance, 307, 106565. https://doi.org/https://doi.org/10.1016/j.jmr.2019.07.052
Silva Terra, A. I., Taylor, D. A., & Halse, M. E. (2024). Hyperpolarised benchtop NMR spectroscopy for analytical applications. Em Progress in Nuclear Magnetic Resonance Spectroscopy (Vols. 144–145, p. 153–178). Elsevier B.V. https://doi.org/10.1016/j.pnmrs.2024.10.001
Sørensen, M. K., Beyer, M., Jensen, O. N., & Nielsen, N. C. (2022). Quantification of protein and phosphorus in livestock feed using mobile NMR sensor technology. Biosystems Engineering, 216, 93–97. https://doi.org/10.1016/j.biosystemseng.2022.02.004
Soyler, A., Cikrikci, S., Cavdaroglu, C., Bouillaud, D., Farjon, J., Giraudeau, P., & Oztop, M. H. (2021b). Multi-scale benchtop 1H NMR spectroscopy for milk analysis. LWT, 139. https://doi.org/10.1016/j.lwt.2020.110557
Tayler, M. C. D., & Sakellariou, D. (2017). Low-cost, pseudo-Halbach dipole magnets for NMR. Journal of Magnetic Resonance, 277, 143–148. https://doi.org/10.1016/j.jmr.2017.03.001
Telfah, A., Bahti, A., Kaufmann, K., Ebel, E., Hergenröder, R., & Suter, D. (2023a). Low-field NMR with multilayer Halbach magnet and NMR selective excitation. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47689-2
Telfah, A., Bahti, A., Kaufmann, K., Ebel, E., Hergenröder, R., & Suter, D. (2023b). Low-field NMR with multilayer Halbach magnet and NMR selective excitation. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47689-2
Turek, K., & Liszkowski, P. (2014). Magnetic field homogeneity perturbations in finite Halbach dipole magnets. Journal of Magnetic Resonance, 238, 52–62. https://doi.org/10.1016/j.jmr.2013.10.026
Wang, Y., Liu, T., Peng, B., Yu, P., Yang, X., & Xu, Y. (2023). Research of integrated shimming Halbach magnet for High strength, compact Benchtop NMR device. Journal of Magnetic Resonance, 355. https://doi.org/10.1016/j.jmr.2023.107559
Windt, C. W., Nabel, M., Kochs, J., Jahnke, S., & Schurr, U. (2021). A Mobile NMR Sensor and Relaxometric Method to Non-destructively Monitor Water and Dry Matter Content in Plants. FRONTIERS IN PLANT SCIENCE, 12. https://doi.org/10.3389/fpls.2021.617768
Windt, C. W., Soltner, H., Dusschoten, D. Van, & Blümler, P. (2011). A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF. Journal of Magnetic Resonance, 208(1), 27–33. https://doi.org/10.1016/j.jmr.2010.09.020
Xu, Y., Wang, F., Wang, Y., Yu, P., Zhang, J., & Yang, X. (2022). Active shim coils design for Halbach magnet based on inverse boundary element method. Magnetic Resonance Letters, 2(3), 159–169. https://doi.org/10.1016/j.mrl.2022.06.001
Yang, L., Chen, F., Chen, L., Zhang, Z., Chen, J., Wang, J., Cheng, X., Feng, J., Bao, Q., & Liu, C. (2023). An easy-built Halbach magnet for LF-NMR with high homogeneity using optimized target-field passive shimming method. Journal of Magnetic Resonance, 357. https://doi.org/10.1016/j.jmr.2023.107582
Ye, Y., Shen, S., Guo, P., Xu, X., Wan, C., & Xu, Z. (2022). A Portable Halbach NMR Sensor for Detecting the Moisture Content of Soybeans. IEEE Transactions on Instrumentation and Measurement, 71, 1–11. https://doi.org/10.1109/TIM.2022.3181266
Yu, P., Wang, Y., Xu, Y., Wu, Z., Zhao, Y., Peng, B., Wang, F., Tang, Y., & Yang, X. (2022). Theoretical foundation for designing multilayer Halbach array magnets for benchtop NMR and MRI. Journal of Magnetic Resonance, 344. https://doi.org/10.1016/j.jmr.2022.107322
Zalesskiy, S. S., Danieli, E., Blümich, B., & Ananikov, V. P. (2014). Miniaturization of NMR systems: Desktop spectrometers, microcoil spectroscopy, and “nMR on a Chip” for chemistry, biochemistry, and industry. Em Chemical Reviews (Vol. 114, Número 11, p. 5641–5694). American Chemical Society. https://doi.org/10.1021/cr400063g
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Mardoqueu Martins da Costa, André Martins, Tiago Bueno de Moraes

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
