Resonancia magnética nuclear de sobremesa basada en matrices Halbach aplicada a la agricultura: Una revisión de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v15i2.50520

Palabras clave:

Matrices magnéticas Halbach, Análisis no destructivo, Resonancia Magnética Nuclear de bajo campo, Aplicaciones agrícolas y alimentarias.

Resumen

La resonancia magnética nuclear (RMN) de bajo campo basada en imanes permanentes se ha convertido en una alternativa prometedora a los sistemas convencionales de alto campo, especialmente para aplicaciones fuera del laboratorio. En este contexto, los arreglos magnéticos tipo Halbach destacan por su capacidad para generar campos magnéticos intensos, homogéneos y autoprotegidos en dispositivos compactos con bajos costos operativos. El objetivo de este artículo es realizar una revisión crítica del estado del arte de la RMN de sobremesa basada en arreglos Halbach y sus aplicaciones en el sector agrícola y agroalimentario. La metodología adoptada consistió en una revisión sistemática de la literatura científica publicada en las últimas décadas, abarcando temas que abarcan desde los fundamentos físicos de la RMN de bajo campo, los principios de la relaxometría y la ingeniería magnética de Halbach, hasta estrategias avanzadas de homogeneización de campo, estabilidad térmica y procesamiento de señales. Se discuten aplicaciones relevantes en fenotipado y fisiología vegetal in vivo, monitoreo de agua en el suelo, evaluación de la calidad de semillas y granos, ciencias de la carne, control de calidad de alimentos y monitoreo de nutrientes y biocombustibles. Los estudios analizados demuestran que los sensores de RMN basados en Halbach permiten análisis rápidos, no destructivos y volumétricos directamente en campo o en líneas de procesamiento, superando las limitaciones de los métodos ópticos de superficie. Se concluye que la integración de los arrays de Halbach con técnicas avanzadas de procesamiento de señales, quimiometría e inteligencia artificial representa una vía estratégica para la democratización de la RMN y el avance de la agricultura de precisión y el control de calidad agroindustrial.

Referencias

Anferova, S., Anferov, V., Arnold, J., Talnishnikh, E., Voda, M. A., Kupferschläger, K., Blümler, P., Clauser, C., & Blümich, B. (2007). Improved Halbach sensor for NMR scanning of drill cores. Magnetic Resonance Imaging, 25(4), 474–480. https://doi.org/10.1016/j.mri.2006.11.016

Balthazar, C. F., Guimarães, J. T., Rocha, R. S., Pimentel, T. C., Neto, R. P. C., Tavares, M. I. B., Graça, J. S., Alves Filho, E. G., Freitas, M. Q., Esmerino, E. A., Granato, D., Rodrigues, S., Raices, R. S. L., Silva, M. C., Sant’Ana, A. S., & Cruz, A. G. (2021). Nuclear magnetic resonance as an analytical tool for monitoring the quality and authenticity of dairy foods. Em Trends in Food Science and Technology (Vol. 108, p. 84–91). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.12.011

Blümich, B. (2019). Low-field and benchtop NMR. Journal of Magnetic Resonance, 306, 27–35. https://doi.org/10.1016/j.jmr.2019.07.030

Blümler, P., & Soltner, H. (2023). Practical Concepts for Design, Construction and Application of Halbach Magnets in Magnetic Resonance. Em Applied Magnetic Resonance (Vol. 54, Números 11–12, p. 1701–1739). Springer. https://doi.org/10.1007/s00723-023-01602-2

Borba, K. R., Oldoni, F. C. A., Monaretto, T., Colnago, L. A., & Ferreira, M. D. (2021). Selection of industrial tomatoes using TD-NMR data and computational classification methods. Microchemical Journal, 164. https://doi.org/10.1016/j.microc.2021.106048

Castaing-Cordier, T., Bouillaud, D., Farjon, J., & Giraudeau, P. (2021). Recent advances in benchtop NMR spectroscopy and its applications. Em Annual Reports on NMR Spectroscopy (Vol. 103, p. 191–258). Academic Press Inc. https://doi.org/10.1016/bs.arnmr.2021.02.003

Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P. & Mota, M. S. (2020). Tipos de revisão de literatura. Journal of Nursing and Health. J. nurs. health. 10(n.esp.):e20104031.

Chen, X., Li, C., Wu, L., Yan, S., Qi, L., Chen, J., & Chen, W. (2025). Low-field NMR for polymer science. Em Giant (Vol. 24). Elsevier B.V. https://doi.org/10.1016/j.giant.2025.100364

Clarke, D. A., Hogendoorn, W., Penn, A., & Serial, M. R. (2025). Magnetic resonance imaging in granular flows: An overview of recent advances. Particuology, 101, 18–32. https://doi.org/10.1016/j.partic.2023.08.007

Colnago, L. A., Wiesman, Z., Pages, G., Musse, M., Monaretto, T., Windt, C. W., & Rondeau-Mouro, C. (2021). Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. Journal of Magnetic Resonance, 323. https://doi.org/10.1016/j.jmr.2020.106899

Danieli, E., Perlo, J., Blümich, B., & Casanova, F. (2010). Small magnets for portable NMR spectrometers. Angewandte Chemie - International Edition, 49(24), 4133–4135. https://doi.org/10.1002/anie.201000221

Fernandes, J. M. B., Vieira, L. T. & Castelhano, M. V. C. (2023). Revisão narrativa enquanto metodologia científica significativa: reflexões técnico-formativas. REDES – Revista Educacional da Sucesso. 3(1), 1-7. ISSN: 2763-6704.

Galvan, D., de Aguiar, L. M., Bona, E., Marini, F., & Killner, M. H. M. (2023). Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Em Analytica Chimica Acta (Vol. 1273). Elsevier B.V. https://doi.org/10.1016/j.aca.2023.341495

Gao, M., Luo, S., Zhu, L., Xiao, L., Liu, H., Liao, G., Lv, X., Chen, H., & Wang, Y. (2025). Easy-to-implement passive shimming approach of Halbach magnet for low-field NMR measurement. Journal of Magnetic Resonance, 376. https://doi.org/10.1016/j.jmr.2025.107887

Giberson, J., Scicluna, J., Legge, N., & Longstaffe, J. (2021). Developments in benchtop NMR spectroscopy 2015–2020. Em Annual Reports on NMR Spectroscopy (Vol. 102, p. 153–246). Academic Press Inc. https://doi.org/10.1016/bs.arnmr.2020.10.006

Gil, A. C. (2017). Como elaborar um projeto de pesquisa. Editora Atlas.

Grootveld, M., Percival, B., Gibson, M., Osman, Y., Edgar, M., Molinari, M., Mather, M. L., Casanova, F., & Wilson, P. B. (2019). Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis. Em Analytica Chimica Acta (Vol. 1067, p. 11–30). Elsevier B.V. https://doi.org/10.1016/j.aca.2019.02.026

Huang, S., Algarín, J. M., Alonso, J., Anieyrudh, R., Borreguero, J., Bschorr, F., Cassidy, P., Choo, W. M., Corcos, D., Guallart-Naval, T., Han, H. J., Igwe, K. C., Kang, J., Li, J., Littin, S., Liu, J., Rodriguez, G. G., Solomon, E., Tan, L. K., … Blümich, B. (2025). Experience of how to build an MRI machine from scratch. Em Progress in Nuclear Magnetic Resonance Spectroscopy (Vols. 150–151). Elsevier B.V. https://doi.org/10.1016/j.pnmrs.2025.10157

4

Janvrin, W., Martin, J., Hancock, D., Varillas, A., Downey, A. R. J., Pellechia, P. J., Satme, J., & Won, S. H. (2025). Open-source compact time-domain hydrogen (1H) NMR System for Field Deployment. HardwareX, 22. https://doi.org/10.1016/j.ohx.2025.e00651

Keating, K., Walsh, D. O., & Grunewald, E. (2020). The effect of magnetic susceptibility and magnetic field strength on porosity estimates determined from low-field nuclear magnetic resonance. Journal of Applied Geophysics, 179. https://doi.org/10.1016/j.jappgeo.2020.104096

Kirtil, E., Cikrikci, S., McCarthy, M. J., & Oztop, M. H. (2017). Recent advances in time domain NMR & MRI sensors and their food applications. Em Current Opinion in Food Science (Vol. 17, p. 9–15). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2017.07.005

Kock, F. V. C., Machado, M. P., Athayde, G. P. B., Colnago, L. A., & Barbosa, L. L. (2018). Quantification of paramagnetic ions in solution using time domain NMR. PROS and CONS to optical emission spectrometry method. Microchemical Journal, 137, 204–207. https://doi.org/10.1016/j.microc.2017.10.013

Lechthaler, S., Robert, E. M. R., Tonné, N., Prusova, A., Gerkema, E., Van As, H., Koedam, N., & Windt, C. W. (2016). Rhizophoraceae mangrove saplings use hypocotyl and leaf water storage capacity to cope with soil water salinity changes. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00895

Mandal, S. (2026a). Advanced magnetic resonance imaging. Em Sensors, Circuits, and Systems for Scientific Instruments (p. 595–638). Elsevier. https://doi.org/10.1016/b978-0-44-334719-1.00018-2

Mandal, S. (2026b). Magnetic resonance imaging. Em Sensors, Circuits, and Systems for Scientific Instruments (p. 505–593). Elsevier. https://doi.org/10.1016/B978-0-44-334719-1.00017-0

McCarney, E. R., McGilchrist, P., Stewart, S. M., & Dykstra, R. (2025). Fast non-destructive measurement of intramuscular fat in Australian beef and lamb using nuclear magnetic resonance (NMR) technologies. Meat Science, 220. https://doi.org/10.1016/j.meatsci.2024.109706

Melchinger, A. E., Munder, S., Mauch, F. J., Mirdita, V., Böhm, J., & Müller, J. (2017). High-throughput platform for automated sorting and selection of single seeds based on time-domain nuclear magnetic resonance (TD-NMR) measurement of oil content. Biosystems Engineering, 164, 213–220. https://doi.org/10.1016/J.BIOSYSTEMSENG.2017.10.011

Miao, R., Wang, Y., Wang, Q., Zheng, Y., He, X., Ren, C., & Jiang, C. (2024). Forward modeling of single-sided magnetic resonance and evaluation of T2 fitting error based on geometric analytical method. Computers and Geosciences, 192. https://doi.org/10.1016/j.cageo.2024.105705

Michal, C. A. (2020). Low-cost low-field NMR and MRI: Instrumentation and applications. Journal of Magnetic Resonance, 319. https://doi.org/10.1016/j.jmr.2020.106800

Oligschläger, D., Rehorn, C., Lehmkuhl, S., Adams, M., Adams, A., & Blümich, B. (2017). A size-adjustable radiofrequency coil for investigating plants in a Halbach magnet. Journal of Magnetic Resonance, 278, 80–87. https://doi.org/10.1016/j.jmr.2017.03.010

Parker, A. J., Zia, W., Rehorn, C. W. G., & Blümich, B. (2016). Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections. Journal of Magnetic Resonance, 265, 83–89. https://doi.org/10.1016/j.jmr.2016.01.014

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.

Peng, B., Yang, J., Wang, Y., Zhao, L., Yang, X., Zheng, J., & Xu, Y. (2025). Design of a thermal management system for halbach magnets in low-field NMR instruments. Applied Thermal Engineering, 280. https://doi.org/10.1016/j.applthermaleng.2025.128026

Raich, H., & Blümler, P. (2004). Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 23(1), 16–25. https://doi.org/10.1002/cmr.b.20018

Rudszuck, T., Nirschl, H., & Guthausen, G. (2021). Perspectives in process analytics using low field NMR. Journal of Magnetic Resonance, 323. https://doi.org/10.1016/j.jmr.2020.106897

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Santos, P. M., Pereira-Filho, E. R., & Colnago, L. A. (2016). Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR). Microchemical Journal, 124, 15–19. https://doi.org/10.1016/j.microc.2015.07.013

Shen, S., Guo, P., Wu, J., Ding, Y., Chen, F., Meng, F., & Xu, Z. (2019). Optimized inside-out magnetic resonance probe for soil moisture measuring in situ. Journal of Magnetic Resonance, 307, 106565. https://doi.org/https://doi.org/10.1016/j.jmr.2019.07.052

Silva Terra, A. I., Taylor, D. A., & Halse, M. E. (2024). Hyperpolarised benchtop NMR spectroscopy for analytical applications. Em Progress in Nuclear Magnetic Resonance Spectroscopy (Vols. 144–145, p. 153–178). Elsevier B.V. https://doi.org/10.1016/j.pnmrs.2024.10.001

Sørensen, M. K., Beyer, M., Jensen, O. N., & Nielsen, N. C. (2022). Quantification of protein and phosphorus in livestock feed using mobile NMR sensor technology. Biosystems Engineering, 216, 93–97. https://doi.org/10.1016/j.biosystemseng.2022.02.004

Soyler, A., Cikrikci, S., Cavdaroglu, C., Bouillaud, D., Farjon, J., Giraudeau, P., & Oztop, M. H. (2021b). Multi-scale benchtop 1H NMR spectroscopy for milk analysis. LWT, 139. https://doi.org/10.1016/j.lwt.2020.110557

Tayler, M. C. D., & Sakellariou, D. (2017). Low-cost, pseudo-Halbach dipole magnets for NMR. Journal of Magnetic Resonance, 277, 143–148. https://doi.org/10.1016/j.jmr.2017.03.001

Telfah, A., Bahti, A., Kaufmann, K., Ebel, E., Hergenröder, R., & Suter, D. (2023a). Low-field NMR with multilayer Halbach magnet and NMR selective excitation. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47689-2

Telfah, A., Bahti, A., Kaufmann, K., Ebel, E., Hergenröder, R., & Suter, D. (2023b). Low-field NMR with multilayer Halbach magnet and NMR selective excitation. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47689-2

Turek, K., & Liszkowski, P. (2014). Magnetic field homogeneity perturbations in finite Halbach dipole magnets. Journal of Magnetic Resonance, 238, 52–62. https://doi.org/10.1016/j.jmr.2013.10.026

Wang, Y., Liu, T., Peng, B., Yu, P., Yang, X., & Xu, Y. (2023). Research of integrated shimming Halbach magnet for High strength, compact Benchtop NMR device. Journal of Magnetic Resonance, 355. https://doi.org/10.1016/j.jmr.2023.107559

Windt, C. W., Nabel, M., Kochs, J., Jahnke, S., & Schurr, U. (2021). A Mobile NMR Sensor and Relaxometric Method to Non-destructively Monitor Water and Dry Matter Content in Plants. FRONTIERS IN PLANT SCIENCE, 12. https://doi.org/10.3389/fpls.2021.617768

Windt, C. W., Soltner, H., Dusschoten, D. Van, & Blümler, P. (2011). A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF. Journal of Magnetic Resonance, 208(1), 27–33. https://doi.org/10.1016/j.jmr.2010.09.020

Xu, Y., Wang, F., Wang, Y., Yu, P., Zhang, J., & Yang, X. (2022). Active shim coils design for Halbach magnet based on inverse boundary element method. Magnetic Resonance Letters, 2(3), 159–169. https://doi.org/10.1016/j.mrl.2022.06.001

Yang, L., Chen, F., Chen, L., Zhang, Z., Chen, J., Wang, J., Cheng, X., Feng, J., Bao, Q., & Liu, C. (2023). An easy-built Halbach magnet for LF-NMR with high homogeneity using optimized target-field passive shimming method. Journal of Magnetic Resonance, 357. https://doi.org/10.1016/j.jmr.2023.107582

Ye, Y., Shen, S., Guo, P., Xu, X., Wan, C., & Xu, Z. (2022). A Portable Halbach NMR Sensor for Detecting the Moisture Content of Soybeans. IEEE Transactions on Instrumentation and Measurement, 71, 1–11. https://doi.org/10.1109/TIM.2022.3181266

Yu, P., Wang, Y., Xu, Y., Wu, Z., Zhao, Y., Peng, B., Wang, F., Tang, Y., & Yang, X. (2022). Theoretical foundation for designing multilayer Halbach array magnets for benchtop NMR and MRI. Journal of Magnetic Resonance, 344. https://doi.org/10.1016/j.jmr.2022.107322

Zalesskiy, S. S., Danieli, E., Blümich, B., & Ananikov, V. P. (2014). Miniaturization of NMR systems: Desktop spectrometers, microcoil spectroscopy, and “nMR on a Chip” for chemistry, biochemistry, and industry. Em Chemical Reviews (Vol. 114, Número 11, p. 5641–5694). American Chemical Society. https://doi.org/10.1021/cr400063g

Publicado

2026-02-01

Número

Sección

Ciencias Agrarias y Biológicas

Cómo citar

Resonancia magnética nuclear de sobremesa basada en matrices Halbach aplicada a la agricultura: Una revisión de la literatura. Research, Society and Development, [S. l.], v. 15, n. 2, p. e0215250520, 2026. DOI: 10.33448/rsd-v15i2.50520. Disponível em: https://rsdjournal.org/rsd/article/view/50520. Acesso em: 12 feb. 2026.