Hemocromatosis asociada con la Enfermedad de Parkinson

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i8.49294

Palabras clave:

Hemocromatosis, Enfermedad de Parkinson, Fisiología.

Resumen

El hierro es un mineral esencial presente en todos los organismos vivos y desempeña un papel clave en numerosos procesos fisiológicos, como el crecimiento, el desarrollo y diversas funciones celulares. Este estudio tiene como objetivo revisar la literatura sobre la asociación entre el metabolismo del hierro, la hemocromatosis y la enfermedad de Parkinson (EP), evaluando cómo la acumulación de hierro puede afectar negativamente la salud y contribuir potencialmente al desarrollo o progresión de la EP. Se trata de una revisión cualitativa de la literatura realizada en agosto de 2024. La investigación se llevó a cabo utilizando las bases de datos Scopus y PubMed, con la selección de 25 estudios. El objetivo fue analizar el papel de la acumulación de hierro en la EP, identificando patrones y lagunas en la evidencia actual. En el sistema nervioso, el hierro es fundamental para la respiración mitocondrial, la formación de mielina y el metabolismo de los neurotransmisores, funciones esenciales para mantener la salud neuronal y el rendimiento cognitivo. Sin embargo, el exceso de hierro puede provocar la producción de radicales libres, causando daño oxidativo que contribuye significativamente a la aparición de diversas condiciones patológicas. Dado que el cuerpo humano carece de mecanismos eficaces para eliminar el exceso de hierro, regular su absorción, transporte y almacenamiento es crucial para prevenir la toxicidad y sus efectos nocivos sobre el sistema nervioso.

Referencias

Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in pharmacology, 14, 1269581. https://doi.org/10.3389/fphar.2023.1269581

Asano, T., Koike, M., Sakata, S., Takeda, Y., Nakagawa, T., Hatano, T., et al. (2015). Possible involvement of iron-induced oxidative insults in neurodegeneration. Neuroscience Letters, 588, 29–35. https://dx.doi.org/10.1016/j.neulet.2014.12.052

Belaidi, A. A., & Bush, A. I. (2016). Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics. Journal of Neurochemistry, 139(Suppl 1), 179–197. https://doi.org/ 10.1111/jnc.13425

Bouchaoui, H., Mahoney-Sanchez, L., Garçon, G., Berdeaux, O., Alleman, L. Y., Devos, D., et al. (2023). ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radical Biology and Medicine, 195, 145–157. https://10.1016/j.freeradbiomed.2022.12.086

Carmona, A., Carboni, E., Gomes, L. C., Roudeau, S., Maass, F., Lenz, C., et al. (2024). Metal dyshomeostasis in the substantia nigra of patients with Parkinson’s disease or multiple sclerosis. Journal of Neurochemistry, 168(2), 128–141. https://doi.org/10.1111/jnc.16040

Casanova, F., Tian, Q., Williamson, D. S., Qian, Y., Zweibaum, D., Ding, J., et al. (2024). MRI-derived brain iron, grey matter volume, and risk of dementia and Parkinson’s disease: Observational and genetic analysis in the UK Biobank cohort. Neurobiology of Disease, 197, 1–7. https://doi.org/10.1016/j.nbd.2024.106539

Cheng, R., Dhorajia, V. V., Kim, J., & Kim, Y. (2022). Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology, 88, 88–101. https://doi.org/10.1016/j.neuro.2021.11.003

Ci, Y. Z., Li, H., You, L. H., Jin, Y., Zhou, R., Gao, G., et al. (2020). Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinson's disease. Neurochemistry international, 134, 104657. https://doi.org/10.1016/j.neuint.2019.104657

Henrich, M. T., Oertel, W. H., Surmeier, D. J., & Geibl, F. F. (2023). Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Molecular neurodegeneration, 18(1), 83. https://doi.org/10.1186/s13024-023-00676-7

Hinarejos, I., Machuca-Arellano, C., Sancho, P., & Espinós, C. (2020). Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel, Switzerland), 9(10), 1020. https://doi.org/10.3390/antiox9101020

Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E., & Agúndez, J. A. G. (2021). Biological fluid levels of iron and iron-related proteins in Parkinson's disease: Review and meta-analysis. European journal of neurology, 28(3), 1041–1055. https://doi.org/10.1111/ene.14607

Kulaszyńska, M., Kwiatkowski, S., & Skonieczna-Żydecka, K. (2024). The Iron Metabolism with a Specific Focus on the Functioning of the Nervous System. Biomedicines, 12(3), 595. https://doi.org/10.3390/biomedicines12030595

Lancione, M., Donatelli, G., Del Prete, E., Campese, N., Frosini, D., Cencini, M., et al. (2022). Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. NeuroImage, 260, 119454. https://doi.org/10.1016/j.neuroimage.2022.119454

Li, B., Xia, M., Zorec, R., Parpura, V., & Verkhratsky, A. (2021). Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain research, 1752, 147234. https://doi.org/10.1016/j.brainres.2020.147234

Liu, C., Liang, M. C., & Soong, T. W. (2019). Nitric Oxide, Iron and Neurodegeneration. Frontiers in neuroscience, 13, 114. https://doi.org/10.3389/fnins.2019.00114

Maniscalchi, A., Benzi Juncos, O. N., Conde, M. A., Funk, M. I., Fermento, M. E., Facchinetti, M. M., et al. (2024). New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biology, 71, 1–15. https://doi.org/10.1016/j.redox.2024.103074

Negida, A., Hassan, N. M., Aboeldahab, H., Zain, Y. E., Negida, Y., Cadri, S., et al. (2024). Efficacy of the iron-chelating agent, deferiprone, in patients with Parkinson's disease: A systematic review and meta-analysis. CNS neuroscience & therapeutics, 30(2), e14607. https://doi.org/10.1111/cns.14607

Ruan, Z., Zhang, D., Huang, R., Sun, W., Hou, L., Zhao, J., et al. (2022). Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. International journal of molecular sciences, 23(5), 2793. https://doi.org/10.3390/ijms23052793

Sánchez Campos, S., Rodríguez Diez, G., Oresti, G. M., & Salvador, G. A. (2015). Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS ONE, 10(6), e0123456. https://doi.org/10.1371/journal.pone.0130726

Virel, A., Faergemann, E., Orädd, G., & Strömberg, I. (2014). Magnetic resonance imaging (MRI) to study striatal iron accumulation in a rat model of Parkinson’s disease. PLoS ONE, 9(11), e0123457. https://doi.org/10.1371/journal.pone.0112941

Vogt, A. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., & Bachmann, M. F. (2021). On Iron Metabolism and Its Regulation. International journal of molecular sciences, 22(9), 4591. https://doi.org/10.3390/ijms22094591

Wang, R., Wang, Y., Qu, L., Chen, B., Jiang, H., Song, N., et al. (2019). Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2. Neurochemistry international, 125, 127–135. https://doi.org/10.1016/j.neuint.2019.02.016

Ward, R. J., Dexter, D. T., & Crichton, R. R. (2022). Iron, Neuroinflammation and Neurodegeneration. International journal of molecular sciences, 23(13), 7267. https://doi.org/10.3390/ijms23137267

Xiao, Z., Wang, X., Pan, X., Xie, J., & Xu, H. (2024). Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Experimental neurology, 372, 114614. https://doi.org/10.1016/j.expneurol.2023.114614

Zhang, N., Yu, X., Song, L., Xiao, Z., Xie, J., & Xu, H. (2022). Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP+-induced MES23.5 dopaminergic cells. Free radical biology & medicine, 193(Pt2), 751–763. https://doi.org/10.1016/j.freeradbiomed.2022.11.018

Descargas

Publicado

2025-08-08

Número

Sección

Ciencias de la salud

Cómo citar

Hemocromatosis asociada con la Enfermedad de Parkinson. Research, Society and Development, [S. l.], v. 14, n. 8, p. e2014849294, 2025. DOI: 10.33448/rsd-v14i8.49294. Disponível em: https://rsdjournal.org/rsd/article/view/49294. Acesso em: 6 dec. 2025.