Hemocromatose associada à Doença de Parkinson

Autores

DOI:

https://doi.org/10.33448/rsd-v14i8.49294

Palavras-chave:

Hemocromatose, Doença de Parkinson, Fisiologia.

Resumo

O ferro é um mineral essencial presente em todos os organismos vivos e é fundamental para inúmeros processos fisiológicos, como crescimento, desenvolvimento e diversas funções celulares. Este estudo tem como objetivo realizar uma revisão da literatura sobre a associação entre metabolismo de ferro, hemocromatose e doença de Parkinson (PD), avaliando como o acúmulo de ferro pode impactar negativamente a saúde, potencialmente contribuindo para o desenvolvimento ou piora da PD. Trata-se de uma revisão qualitativa da literatura realizada em agosto de 2024. A pesquisa foi conduzida nas bases Scopus e PubMed, resultando na seleção de 25 estudos. O objetivo foi analisar o papel do acúmulo de ferro na PD, identificando padrões e lacunas nas evidências atuais. No sistema nervoso, o ferro desempenha papel crítico na respiração mitocondrial, na formação de mielina e no metabolismo dos neurotransmissores, com essas funções sendo essenciais para a manutenção da saúde neuronal e do desempenho cognitivo. No entanto, o excesso de ferro pode gerar radicais livres, resultando em danos oxidativos que contribuem significativamente para o desenvolvimento de diversas condições patológicas. Como o corpo humano não possui mecanismos amplamente eficientes para eliminar o excesso de ferro, regular a absorção, transporte e armazenamento é essencial para prevenir toxicidade.

Referências

Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in pharmacology, 14, 1269581. https://doi.org/10.3389/fphar.2023.1269581

Asano, T., Koike, M., Sakata, S., Takeda, Y., Nakagawa, T., Hatano, T., et al. (2015). Possible involvement of iron-induced oxidative insults in neurodegeneration. Neuroscience Letters, 588, 29–35. https://dx.doi.org/10.1016/j.neulet.2014.12.052

Belaidi, A. A., & Bush, A. I. (2016). Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics. Journal of Neurochemistry, 139(Suppl 1), 179–197. https://doi.org/ 10.1111/jnc.13425

Bouchaoui, H., Mahoney-Sanchez, L., Garçon, G., Berdeaux, O., Alleman, L. Y., Devos, D., et al. (2023). ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radical Biology and Medicine, 195, 145–157. https://10.1016/j.freeradbiomed.2022.12.086

Carmona, A., Carboni, E., Gomes, L. C., Roudeau, S., Maass, F., Lenz, C., et al. (2024). Metal dyshomeostasis in the substantia nigra of patients with Parkinson’s disease or multiple sclerosis. Journal of Neurochemistry, 168(2), 128–141. https://doi.org/10.1111/jnc.16040

Casanova, F., Tian, Q., Williamson, D. S., Qian, Y., Zweibaum, D., Ding, J., et al. (2024). MRI-derived brain iron, grey matter volume, and risk of dementia and Parkinson’s disease: Observational and genetic analysis in the UK Biobank cohort. Neurobiology of Disease, 197, 1–7. https://doi.org/10.1016/j.nbd.2024.106539

Cheng, R., Dhorajia, V. V., Kim, J., & Kim, Y. (2022). Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology, 88, 88–101. https://doi.org/10.1016/j.neuro.2021.11.003

Ci, Y. Z., Li, H., You, L. H., Jin, Y., Zhou, R., Gao, G., et al. (2020). Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinson's disease. Neurochemistry international, 134, 104657. https://doi.org/10.1016/j.neuint.2019.104657

Henrich, M. T., Oertel, W. H., Surmeier, D. J., & Geibl, F. F. (2023). Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Molecular neurodegeneration, 18(1), 83. https://doi.org/10.1186/s13024-023-00676-7

Hinarejos, I., Machuca-Arellano, C., Sancho, P., & Espinós, C. (2020). Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel, Switzerland), 9(10), 1020. https://doi.org/10.3390/antiox9101020

Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E., & Agúndez, J. A. G. (2021). Biological fluid levels of iron and iron-related proteins in Parkinson's disease: Review and meta-analysis. European journal of neurology, 28(3), 1041–1055. https://doi.org/10.1111/ene.14607

Kulaszyńska, M., Kwiatkowski, S., & Skonieczna-Żydecka, K. (2024). The Iron Metabolism with a Specific Focus on the Functioning of the Nervous System. Biomedicines, 12(3), 595. https://doi.org/10.3390/biomedicines12030595

Lancione, M., Donatelli, G., Del Prete, E., Campese, N., Frosini, D., Cencini, M., et al. (2022). Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. NeuroImage, 260, 119454. https://doi.org/10.1016/j.neuroimage.2022.119454

Li, B., Xia, M., Zorec, R., Parpura, V., & Verkhratsky, A. (2021). Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain research, 1752, 147234. https://doi.org/10.1016/j.brainres.2020.147234

Liu, C., Liang, M. C., & Soong, T. W. (2019). Nitric Oxide, Iron and Neurodegeneration. Frontiers in neuroscience, 13, 114. https://doi.org/10.3389/fnins.2019.00114

Maniscalchi, A., Benzi Juncos, O. N., Conde, M. A., Funk, M. I., Fermento, M. E., Facchinetti, M. M., et al. (2024). New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biology, 71, 1–15. https://doi.org/10.1016/j.redox.2024.103074

Negida, A., Hassan, N. M., Aboeldahab, H., Zain, Y. E., Negida, Y., Cadri, S., et al. (2024). Efficacy of the iron-chelating agent, deferiprone, in patients with Parkinson's disease: A systematic review and meta-analysis. CNS neuroscience & therapeutics, 30(2), e14607. https://doi.org/10.1111/cns.14607

Ruan, Z., Zhang, D., Huang, R., Sun, W., Hou, L., Zhao, J., et al. (2022). Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. International journal of molecular sciences, 23(5), 2793. https://doi.org/10.3390/ijms23052793

Sánchez Campos, S., Rodríguez Diez, G., Oresti, G. M., & Salvador, G. A. (2015). Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS ONE, 10(6), e0123456. https://doi.org/10.1371/journal.pone.0130726

Virel, A., Faergemann, E., Orädd, G., & Strömberg, I. (2014). Magnetic resonance imaging (MRI) to study striatal iron accumulation in a rat model of Parkinson’s disease. PLoS ONE, 9(11), e0123457. https://doi.org/10.1371/journal.pone.0112941

Vogt, A. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., & Bachmann, M. F. (2021). On Iron Metabolism and Its Regulation. International journal of molecular sciences, 22(9), 4591. https://doi.org/10.3390/ijms22094591

Wang, R., Wang, Y., Qu, L., Chen, B., Jiang, H., Song, N., et al. (2019). Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2. Neurochemistry international, 125, 127–135. https://doi.org/10.1016/j.neuint.2019.02.016

Ward, R. J., Dexter, D. T., & Crichton, R. R. (2022). Iron, Neuroinflammation and Neurodegeneration. International journal of molecular sciences, 23(13), 7267. https://doi.org/10.3390/ijms23137267

Xiao, Z., Wang, X., Pan, X., Xie, J., & Xu, H. (2024). Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Experimental neurology, 372, 114614. https://doi.org/10.1016/j.expneurol.2023.114614

Zhang, N., Yu, X., Song, L., Xiao, Z., Xie, J., & Xu, H. (2022). Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP+-induced MES23.5 dopaminergic cells. Free radical biology & medicine, 193(Pt2), 751–763. https://doi.org/10.1016/j.freeradbiomed.2022.11.018

Downloads

Publicado

2025-08-08

Edição

Seção

Ciências da Saúde

Como Citar

Hemocromatose associada à Doença de Parkinson. Research, Society and Development, [S. l.], v. 14, n. 8, p. e2014849294, 2025. DOI: 10.33448/rsd-v14i8.49294. Disponível em: https://rsdjournal.org/rsd/article/view/49294. Acesso em: 6 dez. 2025.