Hemocromatose associada à Doença de Parkinson
DOI:
https://doi.org/10.33448/rsd-v14i8.49294Palavras-chave:
Hemocromatose, Doença de Parkinson, Fisiologia.Resumo
O ferro é um mineral essencial presente em todos os organismos vivos e é fundamental para inúmeros processos fisiológicos, como crescimento, desenvolvimento e diversas funções celulares. Este estudo tem como objetivo realizar uma revisão da literatura sobre a associação entre metabolismo de ferro, hemocromatose e doença de Parkinson (PD), avaliando como o acúmulo de ferro pode impactar negativamente a saúde, potencialmente contribuindo para o desenvolvimento ou piora da PD. Trata-se de uma revisão qualitativa da literatura realizada em agosto de 2024. A pesquisa foi conduzida nas bases Scopus e PubMed, resultando na seleção de 25 estudos. O objetivo foi analisar o papel do acúmulo de ferro na PD, identificando padrões e lacunas nas evidências atuais. No sistema nervoso, o ferro desempenha papel crítico na respiração mitocondrial, na formação de mielina e no metabolismo dos neurotransmissores, com essas funções sendo essenciais para a manutenção da saúde neuronal e do desempenho cognitivo. No entanto, o excesso de ferro pode gerar radicais livres, resultando em danos oxidativos que contribuem significativamente para o desenvolvimento de diversas condições patológicas. Como o corpo humano não possui mecanismos amplamente eficientes para eliminar o excesso de ferro, regular a absorção, transporte e armazenamento é essencial para prevenir toxicidade.
Referências
Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in pharmacology, 14, 1269581. https://doi.org/10.3389/fphar.2023.1269581
Asano, T., Koike, M., Sakata, S., Takeda, Y., Nakagawa, T., Hatano, T., et al. (2015). Possible involvement of iron-induced oxidative insults in neurodegeneration. Neuroscience Letters, 588, 29–35. https://dx.doi.org/10.1016/j.neulet.2014.12.052
Belaidi, A. A., & Bush, A. I. (2016). Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics. Journal of Neurochemistry, 139(Suppl 1), 179–197. https://doi.org/ 10.1111/jnc.13425
Bouchaoui, H., Mahoney-Sanchez, L., Garçon, G., Berdeaux, O., Alleman, L. Y., Devos, D., et al. (2023). ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radical Biology and Medicine, 195, 145–157. https://10.1016/j.freeradbiomed.2022.12.086
Carmona, A., Carboni, E., Gomes, L. C., Roudeau, S., Maass, F., Lenz, C., et al. (2024). Metal dyshomeostasis in the substantia nigra of patients with Parkinson’s disease or multiple sclerosis. Journal of Neurochemistry, 168(2), 128–141. https://doi.org/10.1111/jnc.16040
Casanova, F., Tian, Q., Williamson, D. S., Qian, Y., Zweibaum, D., Ding, J., et al. (2024). MRI-derived brain iron, grey matter volume, and risk of dementia and Parkinson’s disease: Observational and genetic analysis in the UK Biobank cohort. Neurobiology of Disease, 197, 1–7. https://doi.org/10.1016/j.nbd.2024.106539
Cheng, R., Dhorajia, V. V., Kim, J., & Kim, Y. (2022). Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology, 88, 88–101. https://doi.org/10.1016/j.neuro.2021.11.003
Ci, Y. Z., Li, H., You, L. H., Jin, Y., Zhou, R., Gao, G., et al. (2020). Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinson's disease. Neurochemistry international, 134, 104657. https://doi.org/10.1016/j.neuint.2019.104657
Henrich, M. T., Oertel, W. H., Surmeier, D. J., & Geibl, F. F. (2023). Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Molecular neurodegeneration, 18(1), 83. https://doi.org/10.1186/s13024-023-00676-7
Hinarejos, I., Machuca-Arellano, C., Sancho, P., & Espinós, C. (2020). Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel, Switzerland), 9(10), 1020. https://doi.org/10.3390/antiox9101020
Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E., & Agúndez, J. A. G. (2021). Biological fluid levels of iron and iron-related proteins in Parkinson's disease: Review and meta-analysis. European journal of neurology, 28(3), 1041–1055. https://doi.org/10.1111/ene.14607
Kulaszyńska, M., Kwiatkowski, S., & Skonieczna-Żydecka, K. (2024). The Iron Metabolism with a Specific Focus on the Functioning of the Nervous System. Biomedicines, 12(3), 595. https://doi.org/10.3390/biomedicines12030595
Lancione, M., Donatelli, G., Del Prete, E., Campese, N., Frosini, D., Cencini, M., et al. (2022). Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. NeuroImage, 260, 119454. https://doi.org/10.1016/j.neuroimage.2022.119454
Li, B., Xia, M., Zorec, R., Parpura, V., & Verkhratsky, A. (2021). Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain research, 1752, 147234. https://doi.org/10.1016/j.brainres.2020.147234
Liu, C., Liang, M. C., & Soong, T. W. (2019). Nitric Oxide, Iron and Neurodegeneration. Frontiers in neuroscience, 13, 114. https://doi.org/10.3389/fnins.2019.00114
Maniscalchi, A., Benzi Juncos, O. N., Conde, M. A., Funk, M. I., Fermento, M. E., Facchinetti, M. M., et al. (2024). New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biology, 71, 1–15. https://doi.org/10.1016/j.redox.2024.103074
Negida, A., Hassan, N. M., Aboeldahab, H., Zain, Y. E., Negida, Y., Cadri, S., et al. (2024). Efficacy of the iron-chelating agent, deferiprone, in patients with Parkinson's disease: A systematic review and meta-analysis. CNS neuroscience & therapeutics, 30(2), e14607. https://doi.org/10.1111/cns.14607
Ruan, Z., Zhang, D., Huang, R., Sun, W., Hou, L., Zhao, J., et al. (2022). Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. International journal of molecular sciences, 23(5), 2793. https://doi.org/10.3390/ijms23052793
Sánchez Campos, S., Rodríguez Diez, G., Oresti, G. M., & Salvador, G. A. (2015). Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS ONE, 10(6), e0123456. https://doi.org/10.1371/journal.pone.0130726
Virel, A., Faergemann, E., Orädd, G., & Strömberg, I. (2014). Magnetic resonance imaging (MRI) to study striatal iron accumulation in a rat model of Parkinson’s disease. PLoS ONE, 9(11), e0123457. https://doi.org/10.1371/journal.pone.0112941
Vogt, A. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., & Bachmann, M. F. (2021). On Iron Metabolism and Its Regulation. International journal of molecular sciences, 22(9), 4591. https://doi.org/10.3390/ijms22094591
Wang, R., Wang, Y., Qu, L., Chen, B., Jiang, H., Song, N., et al. (2019). Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2. Neurochemistry international, 125, 127–135. https://doi.org/10.1016/j.neuint.2019.02.016
Ward, R. J., Dexter, D. T., & Crichton, R. R. (2022). Iron, Neuroinflammation and Neurodegeneration. International journal of molecular sciences, 23(13), 7267. https://doi.org/10.3390/ijms23137267
Xiao, Z., Wang, X., Pan, X., Xie, J., & Xu, H. (2024). Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Experimental neurology, 372, 114614. https://doi.org/10.1016/j.expneurol.2023.114614
Zhang, N., Yu, X., Song, L., Xiao, Z., Xie, J., & Xu, H. (2022). Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP+-induced MES23.5 dopaminergic cells. Free radical biology & medicine, 193(Pt2), 751–763. https://doi.org/10.1016/j.freeradbiomed.2022.11.018
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 David Cohen, Lucas Locatelli Menegaz, Lucas Tiburski Sommer, Hadassa Lucena Sales Santos, Fernanda Cavinatto Pinto, Luiz Carlos Porcello Marrone

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
