Evaluación de estabilización de lodos residuales provenientes de la laguna de oxidación del cantón Bolívar, Manabí, Ecuador
DOI:
https://doi.org/10.33448/rsd-v14i8.49372Palabras clave:
Compostaje, Digestión Anaerobia, Estabilización de Lodos, Aguas Residuales, Sostenibilidad, Contaminación, Tecnología Ambiental.Resumen
El presente estudio tiene como objetivo evaluar las características de los lodos residuales generados del tratamiento de efluentes, con especial atención a casos de estudio como el de las lagunas de oxidación del cantón Bolívar, provincia de Manabí, Ecuador. Se llevó a cabo un análisis sistemático de la bibliografía científica publicada entre el año 2000 y el 2025, empleando bases de datos como Google Scholar, ScienceDirect, Scopus y Springer, con el objetivo de valorar técnicas de estabilización como el compostaje, la digestión anaerobia y el tratamiento químico. Los hallazgos resaltan el compostaje como un método eficaz para la estabilización de lodos, siempre y cuando se mantenga la relación de carbono/nitrógeno (C/N) y el pH. Esto facilita la disminución de agentes patógenos y la producción de subproductos valiosos como abonos. El análisis fisicoquímico de los lodos de Ecuador reveló un pH neutro (7.2), una elevada conductividad eléctrica (1.51 S/cm) y un contenido fluctuante de materia orgánica (3.8%), lo que los distingue de los lodos de naciones como Colombia (pH 12.7) o Alemania (materia orgánica 87.3%). Se reconoció a la digestión anaerobia como una opción prometedora debido a su habilidad para generar biogás, mientras que el tratamiento químico con cal demostró su efectividad en la erradicación de microorganismos. Se determina que la estabilización es fundamental para el uso seguro de los lodos, sugiriéndose tecnologías ajustadas a las condiciones locales de Bolívar para mejorar su administración y reducir los efectos adversos.
Referencias
Abu Orf, M., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., Burton, F., y Pfrang, B. (2013). Wastewater Engineering: Treatment and Resource Recovery.
Afrin, H. (2017). A Review on Different Types Soil Stabilization Techniques. International Journal of Transportation Engineering and Technology, 3(2), 19. https://doi.org/10.11648/j.ijtet.20170302.12
Albornoz Pineda, A. M., & Ortega Valencia, E. M. (2017). Evaluación de la Eficiencia de la Lombriz Roja Californiana E. foetida para Estabilización de Lodos Residuales de la PTAR Salitre. https://hdl.handle.net/11634/2864
Albuquerque, J., Domingos, J., Sant’Anna, G., & Dezotti, M. (2008). Application of ozonation to reduce biological sludge production in an industrial wastewater treatment plant. Water science and technology : a journal of the International Association on Water Pollution Research, 58, 1971-1976. https://doi.org/10.2166/wst.2008.554
Álvarez, J., Amutio, M., López, G., Barbarias, I., Bilbao, J., & Olazar, M. (2015). Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal, 273, 173-183. https://doi.org/10.1016/j.cej.2015.03.047
Ángeles de Paz, G. (2023). Development of bioaugmentation and sewage sludge composting technologies to remove emerging and priority pollutants while reducing their toxicity [Doctoral thesis, Universidad de Granada]. https://digibug.ugr.es/handle/10481/84422
Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
Barragán Sánchez, J., Coello Oviedo, M. D., Cruz Romero, F. J., & Quiroga Alonso, J. M. (2002). The establishment of new control parameters in the aerobic stabilisation of sludge; Establecimiento de nuevos parametros de control en la estabilización aerobia de lodos. Tecnología del Agua, 38. https://www.osti.gov/etdeweb/biblio/20303511
Barrera, R. T., Pabello, V. M. L., Robles, A. N., Trejo, R. R., & Moreno, A. D. (2007). Instituto De Ingenieria, UNAM Y PTAR CERRO DE LA ESTRELLA.
Bernat, K., Zaborowska, M., Zielińska, M., Wojnowska, I., & Ignalewski, W. (2021). Biological treatment of leachate from stabilization of biodegradable municipal solid waste in a sequencing batch biofilm reactor. International Journal of Environmental Science and Technology, 18(5), 1047-1060. https://doi.org/10.1007/s13762-020-02915-6
Berrío, J. (2022). Análisis del rendimiento de residuos industriales usados para la co-digestión anaerobia y producción energética en la planta de tratamiento de aguas residuales de la ciudad de Straubing en Alemania (SER GmbH). https://hdl.handle.net/10495/31595
Boumalek, W., Kettab, A., Bensacia, N., Bruzzoniti, M. C., Othman, D. B., Mandi, L., Chabaca, M. N., & Benziada, S. (2019). Specification of sewage sludge arising from a domestic wastewater treatment plant for agricultural uses. Desalination and Water Treatment, 143, 178-183. https://doi.org/10.5004/dwt.2019.23559
Burns, B., Krach, K., Cole, C., Mangus, J., Butler, H., & Li, B. (2007). Evaluation of Quicklime Incorporation in Bench-Scale and Full-Scale Lime Stabilized Biosolids Using a Flat Surface pH Electrode. Journal of the Air & Waste Management Association, 57(7), 794-802. https://doi.org/10.1080/1047-3289.57.7.794
Capodaglio, A. G., & Callegari, A. (2023). Energy and resources recovery from excess sewage sludge: A holistic analysis of opportunities and strategies. Resources, Conservation & Recycling Advances, 19, 200184. https://doi.org/10.1016/j.rcradv.2023.200184
Cárdenas, J. L., Silva, J. A., Pérez, A., & Torres, P. (2022). The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review. Sustainability, 14(10), Article 10. https://doi.org/10.3390/su14105910
Castellanos, J., Merchán, N. A., Galvis, J. & Manjarres, E. H. (2018). Deshidratación de los lodos en lecho de secado y su influencia sobre la actividad biológica de los microorganismos. Gestión y Ambiente, 21(2), 242-251. https://doi.org/10.15446/ga.v21n2.75876
Castillo, J. G., Balarezo Saltos, L. D., Vinces Obando, M. B. & Zambrano Rizo, H. A. (2020). Alternativas en la estabilización de lodos provenientes de plantas de tratamiento de aguas residuales. Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT ISSN: 2588-0721, 5(1), 23. https://doi.org/10.33936/riemat.v5i1.2499
Cecconet, D. & Capodaglio, A. G. (2022). Sewage Sludge Biorefinery for Circular Economy. Sustainability, 14(22), Article 22. https://doi.org/10.3390/su142214841
Chimbolema, J. G. L. (2025). Optimization of sewage sludge: An integrated approach to sustainable compost production. Centrosur Agraria, 1(24), Article 24.
Choi, Y., Ryu, J. & Lee, S. R. (2020). Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. Journal of Animal Science and Technology, 62(1), 74-83. https://doi.org/10.5187/jast.2020.62.1.74
Cortés, C. (2013). Tratamiento de agua residual urbana con salinidad variable [Doctoral thesis, Universidad de Granada]. https://digibug.ugr.es/handle/10481/23760
Cunha, M., Romaní, A., Carvalho, M., & Domingues, L. (2018). Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresource Technology, 250, 256-264. https://doi.org/10.1016/j.biortech.2017.11.023
Dede, C., Ozer, H., Dede, O. H., Celebi, A., & Ozdemir, S. (2023). Recycling Nutrient-Rich Municipal Wastes into Ready-to-Use Potting Soil: An Approach for the Sustainable Resource Circularity with Inorganic Porous Materials. Horticulturae, 9(2), 203. https://doi.org/10.3390/horticulturae9020203
Di Capua, F., de Sario, S., Ferraro, A., Petrella, A., Race, M., Pirozzi, F., Fratino, U., & Spasiano, D. (2022). Phosphorous removal and recovery from urban wastewater: Current practices and new directions. Science of The Total Environment, 823, 153750. https://doi.org/10.1016/j.scitotenv.2022.153750
Díaz, A. A., Lorenzo, E. V., & Venta, M. B. (2015). Tratamiento de lodos, generalidades y aplicaciones. Revista CENIC. Ciencias Químicas, 46, 1-10.
Do Carmo, A., Ebner, C., Gerke, F., Wehner, M., Robra, S., Hupfauf, S., & Bockreis, A. (2022). Residual municipal solid waste as co-substrate at wastewater treatment plants: An assessment of methane yield, dewatering potential and microbial diversity. Science of The Total Environment, 804, 149936. https://doi.org/10.1016/j.scitotenv.2021.149936
Dume, B., Hanc, A., Svehla, P., Michal, P., Chane, A. D., & Nigussie, A. (2023). Composting and vermicomposting of sewage sludge at various C/N ratios: Technological feasibility and end-product quality. Ecotoxicology and Environmental Safety, 263, 115255. https://doi.org/10.1016/j.ecoenv.2023.115255
Farzadkia, M., & Mahvi, A. (2004). Comparison of Extended Aeration Activated Sludge Process and Activated Sludge with Lime Addition Method for Biosolids Stabilization. Pakistan Journal of Biological Sciences, 7(12), 2061-2065. https://doi.org/10.3923/pjbs.2004.2061.2065
Gao, X., Tan, W., Zhao, Y., Wu, J., Sun, Q., Qi, H., Xie, X., & Wei, Z. (2019). Diversity in the Mechanisms of Humin Formation during Composting with Different Materials. Environmental Science & Technology, 53(7), 3653-3662. https://doi.org/10.1021/acs.est.8b06401
Garcés, L. M. (2019). Decreto Ejecutivo 752 Registro Oficial Suplemento 507 de 12-jun.-2019 Estado: Vigente.
Gezer, E. D., & Cooper, P. A. (2009). Factors affecting sodium hypochlorite extraction of CCA from treated wood. Waste Management, 29(12), 3009-3013. https://doi.org/10.1016/j.wasman.2009.08.013
González, E., & José, M. (2020). Estudio comparativo del proceso de compostaje a escala industrial: Análisis metagenómico y vinculación con los parámetros críticos de control del proceso. https://repositorio.ual.es/handle/10835/10879
Górka, J., Cimochowicz, M., & Poproch, D. (2022). Sludge Management at the Kraków-Płaszów WWTP—Case Study. Sustainability, 14(13), Article 13. https://doi.org/10.3390/su14137982
Gualoto, J. J. (2017). Propuesta de Gestión de Lodos Residuales Municipales. Caso de Estudio: Planta de Tratamiento de Agua Residual de la Parroquia Rural de Nono [bachelorThesis, Quito, 2017.]. http://bibdigital.epn.edu.ec/handle/15000/17066
Han, F., & Zhou, W. (2022). Nitrogen recovery from wastewater by microbial assimilation – A review. Bioresource Technology, 363, 127933. https://doi.org/10.1016/j.biortech.2022.127933
Hassan, K., Senko, S., Villa, A., Grafova, E., Pappinen, A., & Kuittinen, S. (2023). Techno-economic evaluation of biofertilizer production using wastewater biosolids: Case study from municipal wastewater treatment plants in northwest region of Russia. Journal of Material Cycles and Waste Management, 25(6), 3380-3394. https://doi.org/10.1007/s10163-023-01766-w
He, Q., Xie, Z., Tang, M., Fu, Z., Ma, J., Wang, H., Zhang, W., Zhang, H., Wang, M., Hu, J., & Xu, P. (2021). Insights into the simultaneous nitrification, denitrification and phosphorus removal process for in situ sludge reduction and potential phosphorus recovery. Science of The Total Environment, 801, 149569. https://doi.org/10.1016/j.scitotenv.2021.149569
Holguino, A., & Roman Salinas, V. (2021). Degradación anaeróbica de lodos de aguas residuales de la laguna de estabilización el espinar. Revista de Investigaciones, 10(3), 198-215. https://doi.org/10.26788/riepg.v10i3.2841
Huezo S., L. A. (2011). Caracterización hidrológica y balance hídrico de la microcuenca Santa Inés, Honduras [Zamorano: Escuela Agrícola Panamericana, 2012.]. https://bdigital.zamorano.edu/handle/11036/407
Iglesias, S., Ferreiro, R., Carbia, J., & Iglesias, D. (2018). A review of thermodynamic cycles used in low temperature recovery systems over the last two years. Renewable and Sustainable Energy Reviews, 81, 760-767. https://doi.org/10.1016/j.rser.2017.08.049
INEN. Servicio Ecuatoriano de Normalización INEN – Ecuador. https://www.normalizacion.gob.ec/
Jakubus, M., & Graczyk, M. (2024). Rate of Microelement Quantitative Changes during the Composting of Sewage Sludge with Various Bulking Agents. Applied Sciences, 14(15), 6693. https://doi.org/10.3390/app14156693
Kacprzak, M., Neczaj, E., Fijałkowski, K., Grobelak, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almås, Å., & Singh, B. R. (2017). Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39-46. https://doi.org/10.1016/j.envres.2017.03.010
Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N., Kim, J., Chang, S. W., Hong, Y., Duc La, D., Nguyen, X. C., Hao Ngo, H., Chung, W. J., & Nguyen, D. D. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. https://doi.org/10.1016/j.fuel.2020.119105
Kumar, V., Chopra, A. K., & Kumar, A. (2017). A Review on Sewage Sludge (Biosolids) a Resource for Sustainable Agriculture. Archives of Agriculture and Environmental Science, 2(4), 340-347. https://doi.org/10.26832/24566632.2017.020417
Latare, A. M., Kumar, O., Singh, S. K., & Gupta, A. (2014). Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecological Engineering, 69, 17-24. https://doi.org/10.1016/j.ecoleng.2014.03.066
Li, C., Xie, S., You, F., Zhu, X., Li, J., Xu, X., Yu, G., Wang, Y., & Angelidaki, I. (2021). Heavy metal stabilization and improved biochar generation via pyrolysis of hydrothermally treated sewage sludge with antibiotic mycelial residue. Waste Management, 119, 152-161. https://doi.org/10.1016/j.wasman.2020.09.050
Lian, Q., Qi, J., Huang, D., Song, W., & Yuan, J. (2025). Carbon to nitrogen ratio and organic loading rate optimization of sewage sludge and rice straw: Economic analysis and anaerobic digestion process understandings through machine learning. Energy, 330, 136789. https://doi.org/10.1016/j.energy.2025.136789
Limon, J. G. (2013). Los lodos de las plantas de tratamiento de aguas residuales, ¿problema o recurso? Ingeniería Química.
Lin, Z., Wu, Z.-L., Sun, Z.-Y., Gou, M., Xia, Z.-Y., & Tang, Y.-Q. (2021). Aerobic post-treatment of anaerobic digested sludge with a focus on organic matter stability and the fate of antibiotic resistance genes. Journal of Cleaner Production, 289, 125798. https://doi.org/10.1016/j.jclepro.2021.125798
Luisa, A., Purificación, M., Luisa, R., & José, M. (2000). Contenido, evolución de nutrientes y productividad en un suelo tratado con lodos residuales urbanos. Edafología, 7, 21-29.
Mahamud, M., Gutiérrez, A., & Sastre, H. (1996). Biosólidos generados en la depuración de aguas: (II). Métodos de tratamiento. Ingeniería del agua, 3(3). https://doi.org/10.4995/ia.1996.2703
Major, N., Jechalke, S., Nesme, J., Goreta Ban, S., Černe, M., Sørensen, S. J., Ban, D., Grosch, R., Schikora, A., & Schierstaedt, J. (2022). Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. Waste Management, 154, 126-135. https://doi.org/10.1016/j.wasman.2022.09.033
Malińska, K., Czekała, W., Janczak, D., Dach, J., Mazurkiewicz, J., & Dróżdż, D. (2018). Spent Mushroom Substrate as a Supplementary Material for Sewage Sludge Composting Mixtures. Engineering and Protection of Environment, 21(1), 29-38. https://doi.org/10.17512/ios.2018.1.3
Marín Bahamón, D. (2019). Propuesta de aprovechamiento de lodos residuales provenientes de una PTAR del municipio de Sopó Cundinamarca para la producción de un fertilizante órgano-mineral. https://hdl.handle.net/20.500.11839/7393
Medina, M. D. R., Negrete, M. D. L. L. X., Gámez Vázquez, F. P., Álvarez Bernal, D., & Conde Barajas, E. (2020). La aplicación de lodos residuales afecta, a corto plazo, biomasa microbiana y su actividad en suelos sódicos. Revista Internacional de Contaminación Ambiental. https://doi.org/10.20937/RICA.53425
Mininni, G., Blanch, A. R., Lucena, F., & Berselli, S. (2015). EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environmental Science and Pollution Research, 22(10), 7361-7374. https://doi.org/10.1007/s11356-014-3132-0
Muñante Carrillo, K. A., Perca Machaca, D. D. R., Nina, R. J., Quispe Sucasaca, J. C., Alarcón Maquera, G. E., & Tirado Rebaza, L. U. M. (2022). Aprovechamiento de estiércol vacuno y pasto seco en la vermiestabilización de lodos residuales de la ptar (planta de tratamiento de aguas residuales) magollo. Revista de Ciencia, Tecnología e Innovación, 20(26), 163-178. https://doi.org/10.56469/rcti.v20i26.712
Nieves, J. B. C., & González, A. F. P. (2023). Efecto de la conductividad eléctrica a partir de la salinidad y sólidos disueltos en los procesos biológicos de nitrificación y desnitrificación para la remoción de compuestos nitrogenados en aguas residuales domésticas.
Oliva, M., Vargas, F., & López, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029-1041. https://doi.org/10.1016/j.jclepro.2019.03.147
Orlina, E. R., Mactal, A. G., Juico, P. P., Mason, M. L. T., Paragas, D. S., & Maquirang, J. D. (2024). Heavy Metal Levels and Target Hazard Quotients of Ipomoea aquatica Grown in Soils Applied with Stabilized Biosolids. Universal Journal of Agricultural Research, 12(1), 169-179. https://doi.org/10.13189/ujar.2024.120116
Pachaiappan, R., Cornejo Ponce, L., Rajendran, R., Manavalan, K., Femilaa Rajan, V., & Awad, F. (2022). A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered, 13(4), 8432-8477. https://doi.org/10.1080/21655979.2022.2050538
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Pan, J., Cai, H., Zhang, Z., Liu, H., Li, R., Mao, H., Awasthi, M. K., Wang, Q., & Zhai, L. (2018). Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction. Bioresource Technology, 270, 467-475. https://doi.org/10.1016/j.biortech.2018.09.050
Pasciucco, F., Pasciucco, E., Castagnoli, A., Iannelli, R., & Pecorini, I. (2024). Comparing the effects of Al-based coagulants in waste activated sludge anaerobic digestion: Methane yield, kinetics and sludge implications. Heliyon, 10(7), e29282. https://doi.org/10.1016/j.heliyon.2024.e29282
Patel, S., Kundu, S., Halder, P., Ratnnayake, N., Marzbali, M. H., Aktar, S., Selezneva, E., Paz-Ferreiro, J., Surapaneni, A., De Figueiredo, C. C., Sharma, A., Megharaj, M., & Shah, K. (2020). A critical literature review on biosolids to biochar: An alternative biosolids management option. Reviews in Environmental Science and Bio/Technology, 19(4), 807-841. https://doi.org/10.1007/s11157-020-09553-x
Patel, S., Kundu, S., Halder, P., Rickards, L., Paz-Ferreiro, J., Surapaneni, A., Madapusi, S., & Shah, K. (2019). Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides. Renewable Energy, 141, 707-716. https://doi.org/10.1016/j.renene.2019.04.047
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM
Pérez Zúñiga, M. E. (2016). Tratamiento de lodos residuales procedentes de plantas de tratamiento de aguas residuales mediante procesos electroquímicos para la disminución de metales pesados (Pb) [bachelorThesis]. http://dspace.ups.edu.ec/handle/123456789/12045
Reyes, D. Y., Mora, M. E., Lugo, J., & Del Águila, P. (2020). Estabilización por vermicomposteo de lodos residuales aplicados en la productividad de albahaca (Ocimum basilicum L.). Revista Internacional de Contaminación Ambiental, 36(2). https://doi.org/10.20937/RICA.53537
Rimassa, L. M. (2019). Propuestas de tratamiento de los lodos residuales de una planta de tratamiento de aguas residuales domésticas [bachelorThesis, Guayaquil: ULVR, 2019.]. http://repositorio.ulvr.edu.ec/handle/44000/3486
Rodriguez, C. I., Duque, C., Calvache, M. L., & López Chicano, M. (2010). Causas de las variaciones de la conductividad eléctrica del agua subterránea en el acuífero de Motril-Salobreña, España. https://ri.conicet.gov.ar/handle/11336/245591
Rodríguez, I., Canet, R., Quiñones, A., & Pérez, A. (2023). Industrial-Scale Composting of Rice Straw and Sewage Sludge. Agronomy, 13(9), 2295. https://doi.org/10.3390/agronomy13092295
Ruiz, R. (2017). Aprovechamiento del estiércol bovino generado en el municipio de Cumbal-Nariño para obtener energía renovable mediante digestión anaerobia. https://repositorio.unal.edu.co/handle/unal/59752
Stegenta, S., Sobieraj, K., Rosik, J., Sidełko, R., Valentin, M., & Białowiec, A. (2022). The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge. Sustainability, 14(16), Article 16. https://doi.org/10.3390/su141610248
Tamar, S. A., & Umer, M. I. (2022). Stabilization of Sludge in Zakho Municipal Wastewater by Anaerobic Digestion for Biogas Production in Kurdistan Region, Iraq. Science Journal of University of Zakho, 10(3), Article 3. https://doi.org/10.25271/sjuoz.2022.10.3.924
Tech, G. W. (2019, abril 16). Pros y contras de los métodos de tratamiento de aguas residuales: Coagulación y desinfección. Genesis Water Technologies. https://es.genesiswatertech.com/entrada-en-el-blog/Pros-y-contras-de-los-m%C3%A9todos-de-tratamiento-de-aguas-residuales-desinfecci%C3%B3n-de-la-coagulaci%C3%B3n/
Torres, P., Madera, C., & Silva, J. (2009). Eliminación de Patógenos en Biosólidos por Estabilización Alcalina / Eliminating pathogens in biosolids by alkaline stabilization. Acta agronomica, 58, 197-205.
Tulun, S., Y & Bilgin, M. (2019). Enhancement of anaerobic digestion of waste activated sludge by chemical pretreatment. Fuel, 254, 115671. https://doi.org/10.1016/j.fuel.2019.115671
USA EPA, O. (2019). Land Application of Biosolids [Overviews and Factsheets]. https://www.epa.gov/biosolids/land-application-biosolids
Werther, J., & Ogada, T. (1999). Sewage sludge combustion. Progress in Energy and Combustion Science, 25(1), 55-116. https://doi.org/10.1016/S0360-1285(98)00020-3
Wiśniewska, M., & Szyłak-Szydłowski, M. (2021). The Air and Sewage Pollutants from Biological Waste Treatment. Processes, 9(2), 250. https://doi.org/10.3390/pr9020250
Wu, Y., Lu, M., Liu, X., Chen, H., Deng, Z., Fu, Q., Wang, D., Chen, Y., & Zhong, Y. (2022). Insights into how poly aluminum chloride and poly ferric sulfate affect methane production from anaerobic digestion of waste activated sludge. Science of The Total Environment, 811, 151413. https://doi.org/10.1016/j.scitotenv.2021.151413
Yu, B., Xu, J., Yuan, H., Lou, Z., Lin, J., & Zhu, N. (2014). Enhancement of anaerobic digestion of waste activated sludge by electrochemical pretreatment. Fuel, 130, 279-285. https://doi.org/10.1016/j.fuel.2014.04.031
Yupanqui Pacheco, K., Espinoza Rojas, W. I., Alhua Lozano, B. J., & Cornejo Tueros, J. V. (2024). Reingeniería y optimización de los procesos de la planta de tratamientos de aguas residuales “Doris Mendoza”. Prohominum, 6(1), 134-150. https://doi.org/10.47606/ACVEN/PH0233
Zhai, S., Zhang, D., Liu, W., Wang, B., Liang, B., Liu, C., Zeng, R., Hou, Y., Cheng, H.-Y., & Wang, A. (2023). Microbial electrochemical technologies assisted nitrogen recovery from different wastewater sources: Performance, life cycle assessment, and challenges. Resources, Conservation and Recycling, 194, 107000. https://doi.org/10.1016/j.resconrec.2023.107000
Zhao, S., Zheng, Q., Wang, H., & Fan, X. (2024). Nitrogen in landfills: Sources, environmental impacts and novel treatment approaches. Science of The Total Environment, 924, 171725. https://doi.org/10.1016/j.scitotenv.2024.171725
Zheng, Y., Wang, P., Yang, X., Lin, P., Wang, Y., Cheng, M., & Ren, L. (2022). Process Performance and Microbial Communities in Anaerobic Co-digestion of Sewage Sludge and Food Waste with a Lower Range of Carbon/Nitrogen Ratio. BioEnergy Research, 15(3), 1664-1674. https://doi.org/10.1007/s12155-021-10357-2
Zigmontienė, A., & Šerevičienė, V. (2023). Nitrogen sequestration during sewage sludge composting and vermicomposting. Journal of Environmental Engineering and Landscape Management, 31(2), 157-XXX. https://doi.org/10.3846/jeelm.2023.19298
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 David Robalino, Enzo Poveda, Carlos Banchón

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
