Beneficios de la suplementación con oligoelementos complejos orgánicos (Zn, Cu, Mn y Fe) en aves y cerdos: Una mini-revisión
DOI:
https://doi.org/10.33448/rsd-v14i9.49508Palabras clave:
Gallinas ponedoras, Pollos de engorde, Cerdos, Minerales Orgánicos, Sostenibilidad.Resumen
El objetivo de esta revisión es proporcionar una actualización concisa sobre los beneficios observados al suplementar minerales traza orgánicos como el zinc, el cobre, el manganeso y el hierro en la industria avícola y porcina, centrándose en los minerales complejos con aminoácidos no específicos y oligopéptidos. Se realizó una investigación cualitativa del tipo revisión narrativa de la literatura. Los microminerales desempeñan varias funciones esenciales en los animales de granja. La suplementación con microminerales en forma de aminoácidos complejos o péptidos pequeños puede mejorar el grosor y el color de la cáscara de los huevos en las gallinas ponedoras, prevenir problemas de calidad de la carne en los pollos de engorde y mantener la capacidad antioxidante en los cerdos. Además de mejorar los aspectos productivos y sanitarios, el uso de minerales orgánicos se asocia con una menor excreción fecal de estos nutrientes, lo que contribuye a reducir los impactos ambientales negativos, como el daño al crecimiento de las plantas, la microbiota del suelo y el desequilibrio ecológico en general. Se puede concluir que el uso de minerales orgánicos es una alternativa nutricional con potencial para promover la eficiencia y reducir los impactos ambientales negativos en la industria avícola y porcina.
Referencias
Alrubaye, A. A. K., Ekesi, N. S., Hasan, A., Elkins, E., Ojha, S., Zaki, S., Dridi, S., Wideman, R. F., Rebollo, M. A., & Rhoads, D. D. (2020). Chondronecrosis with osteomyelitis in broilers: Further defining lameness-inducing models with wire or litter flooring to evaluate protection with organic trace minerals. Poultry Science, 99(11), 5422–5429. https://doi.org/10.1016/j.psj.2020.08.027
Aragão, F. B., Galter, I. N., Grecco, K. D., Coelho, E. J. R., Da Silva, T. T., Bonomo, M. M., Fernandes, M. N., & Matsumoto, S. T. (2024). Toxic risk evaluation of effluents from a swine biodigester in the plant models Lactuca sativa and Allium cepa. Environmental Monitoring and Assessment, 196(1), 64. https://doi.org/10.1007/s10661-023-12173-x
Ashmead, H. D. (2012). Amino acid chelation in human and animal nutrition (1st ed). Taylor & Francis Group.
Bernstein, R. S., Nevalainen, T., Schraer, R., & Schraer, H. (1968). Intracellular distribution and role of carbonic anhydrase in the avian (Gallus domesticus) shell gland mucosa. Biochimica et Biophysica Acta (BBA) - Enzymology, 159(2), 367–376. https://doi.org/10.1016/0005-2744(68)90085-5
Butterworth, A., Arnould, C., & Niekerk, T. F. (Orgs.). (2009). Assessment protocol for poultry. Welfare Quality Consortium.
Chae, H. S., Singh, N. K., Yoo, Y. M., Ahn, C. N., Jeong, S. G., Ham, J. S., & Kim, D. H. (2007). Meat quality and storage characteristics depending on pse status of broiler breast meat. Asian-Australasian Journal of Animal Sciences, 20(4), 582–587. https://doi.org/10.5713/ajas.2007.582
Chen, J., Tellez, G., Escobar, J., & Vazquez-Anon, M. (2017). Impact of trace minerals on wound healing of footpad dermatitis in broilers. Scientific Reports, 7(1), 1894. https://doi.org/10.1038/s41598-017-02026-2
Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C., & Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science, 9, 920418. https://doi.org/10.3389/fvets.2022.920418
Elnesr, S. S., Mahmoud, B. Y., Da Silva Pires, P. G., Moraes, P., Elwan, H. A. M., El-Shall, N. A., El-Kholy, M. S., & Alagawany, M. (2024). Trace minerals in laying hen diets and their effects on egg quality. Biological Trace Element Research, 202(12), 5664–5679. https://doi.org/10.1007/s12011-024-04121-8
Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., & Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science, 162, 108025. https://doi.org/10.1016/j.meatsci.2019.108025
Li, M., Bao, K., Wang, H., Dai, Y., Wu, S., Yan, K., Liu, S., Yuan, Q., & Lu, J. (2024). Distribution and ecological risk assessment of nutrients and heavy metals in the coastal zone of yantai, china. Water, 16(5), 760. https://doi.org/10.3390/w16050760
Li, Y., Liu, Y., Mu, C., Zhang, C., Yu, M., Tian, Z., Deng, D., & Ma, X. (2024). Magnolol-driven microbiota modulation elicits changes in tryptophan metabolism resulting in reduced skatole formation in pigs. Journal of Hazardous Materials, 467, 133423. https://doi.org/10.1016/j.jhazmat.2024.133423
Liu, B., Xiong, P., Chen, N., He, J., Lin, G., Xue, Y., Li, W., & Yu, D. (2016). Effects of replacing of inorganic trace minerals by organically bound trace minerals on growth performance, tissue mineral status, and fecal mineral excretion in commercial grower-finisher pigs. Biological Trace Element Research, 173(2), 316–324. https://doi.org/10.1007/s12011-016-0658-7
Mellor, D. J., Beausoleil, N. J., Littlewood, K. E., McLean, A. N., McGreevy, P. D., Jones, B., & Wilkins, C. (2020). The 2020 five domains model: Including human–animal interactions in assessments of animal welfare. Animals, 10(10), 1870. https://doi.org/10.3390/ani10101870
Miotto, A., Ceretta, C. A., Brunetto, G., Nicoloso, F. T., Girotto, E., Farias, J. G., Tiecher, T. L., De Conti, L., & Trentin, G. (2014). Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant and Soil, 374(1–2), 593–610. https://doi.org/10.1007/s11104-013-1886-7
Nalon, E., Conte, S., Maes, D., Tuyttens, F. A. M., & Devillers, N. (2013). Assessment of lameness and claw lesions in sows. Livestock Science, 156(1–3), 10–23. https://doi.org/10.1016/j.livsci.2013.06.003
Nie, X., Yin, Y., Lu, Q., Zhao, F., Dai, Y., Wang, R., Ji, Y., Zhang, H., & Zhu, C. (2025). The potential of supplementing compound organic trace elements at lower levels in Chinese yellow-feathered broiler diets, Part I: Impacts on plasma biochemical parameters, antioxidant capacity, carcass traits, meat quality, and tissue mineral deposition. Poultry Science, 104(1), 104580. https://doi.org/10.1016/j.psj.2024.104580
Nie, X., Zhao, F., Yin, Y., Lu, Q., Dai, Y., Wang, R., Ji, Y., Zhang, H., & Zhu, C. (2025). The potential of supplementing compound organic trace elements at lower levels in Chinese yellow- feathered broiler diets, part II: Impacts on growth performance, gut health, intestinal microbiota, and fecal mineral excretion. Poultry Science, 104(2), 104797. https://doi.org/10.1016/j.psj.2025.104797
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM
Rossi, P., Rutz, F., Anciuti, M. A., Rech, J. L., & Zauk, N. H. F. (2007). Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. Journal of Applied Poultry Research, 16(2), 219–225. https://doi.org/10.1093/japr/16.2.219
Sampath, V., Sureshkumar, S., Seok, W. J., & Kim, I. H. (2023). Role and functions of micro and macro-minerals in swine nutrition: A short review. Journal of Animal Science and Technology, 65(3), 479–489. https://doi.org/10.5187/jast.2023.e9
Santos, M. J. B., Ludke, M. C. M. M., Silva, L. M., Rabello, C. B. V., Barros, M. R., Costa, F. S., Santos, C. S., & Wanderley, J. S. S. (2024). Complexed amino acid minerals vs. bis-glycinate chelated minerals: Impact on the performance of old laying hens. Animal Nutrition, 16, 395–408. https://doi.org/10.1016/j.aninu.2023.11.006
Santos, M. J. B., Rabello, C. B. V., Wanderley, J. S. S., Ludke, M. C. M. M., Barros, M. R., Costa, F. S., Santos, C. S., & Fireman, A. K. (2024). Levels of substitution of inorganic mineral to amino acids complexed minerals on old laying hens. Scientific Reports, 14(1), 24803. https://doi.org/10.1038/s41598-024-75897-x
Smith, V. H. (2009). Eutrophication. Em Encyclopedia of Inland Waters (p. 61–73). Elsevier. https://doi.org/10.1016/B978-012370626-3.00234-9
Studer, J. M., Kiefer, Z. E., Goetz, B. M., Keating, A. F., Baumgard, L. H., Rambo, Z. J., Schweer, W. P., Wilson, M. E., Rapp, C., & Ross, J. W. (2021). Impact of manganese amino acid complex on tissue-specific trace mineral distribution and corpus luteum function in gilts. Journal of Animal Science, 99(8), skab155. https://doi.org/10.1093/jas/skab155
Studer, J. M., Schweer, W. P., Gabler, N. K., & Ross, J. W. (2022). Functions of manganese in reproduction. Animal Reproduction Science, 238, 106924. https://doi.org/10.1016/j.anireprosci.2022.106924
Thomaz, M. C., Watanabe, P. H., Pascoal, L. A. F., Assis, M. M., Ruiz, U. S., Amorim, A. B., Silva, S. Z., Almeida, V. V., Melo, G. M. P., & Robles-Huaynate, R. A. (2015). Inorganic and organic trace mineral supplementation in weanling pig diets. Anais da Academia Brasileira de Ciências, 87(2), 1071–1081. https://doi.org/10.1590/0001-3765201520140154
Van Den Brand, H., Hubers, T., Van Den Anker, I., Torres, C. A., Frehen, E., Ooms, M., Arts, J., Laurenssen, B. F. A., Heetkamp, M. J. W., Kemp, B., & Molenaar, R. (2023). Effects of trace minerals source in the broiler breeder diet and eggshell translucency on embryonic development of the offspring. Poultry Science, 102(3), 102455. https://doi.org/10.1016/j.psj.2022.102455
Varagka, N., Lisgara, M., Skampardonis, V., Psychas, V., & Leontides, L. (2016). Partial substitution, with their chelated complexes, of the inorganic zinc, copper and manganese in sow diets reduced the laminitic lesions in the claws and improved the morphometric characteristics of the hoof horn of sows from three Greek herds. Porcine Health Management, 2(1), 26. https://doi.org/10.1186/s40813-016-0040-3
Vieira, R., Ferket, P., Malheiros, R., Hannas, M., Crivellari, R., Moraes, V., & Elliott, S. (2020). Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. British Poultry Science, 61(5), 574–582. https://doi.org/10.1080/00071668.2020.1764908
Wang, C., Wu, Y., Shu, D., Wei, H., Zhou, Y., & Peng, J. (2019). An analysis of culling patterns during the breeding cycle and lifetime production from the aspect of culling reasons for gilts and sows in southwest china. Animals, 9(4), 160. https://doi.org/10.3390/ani9040160
Welfare Quality® assessment protocol for poultry (broilers, laying hens). Welfare Quality® Consortium, Lelystad, Netherlands. Disponível em: . Acesso em: 10 jul. 2024.
Wyszkowska, J., Boros-Lajszner, E., Borowik, A., Baćmaga, M., Kucharski, J., & Tomkiel, M. (2016). Implication of zinc excess on soil health. Journal of Environmental Science and Health, Part B, 51(5), 261–270. https://doi.org/10.1080/10934529.2015.1128726
Xiong, Y., Zhao, F., Li, Y., Wu, Q., Xiao, H., Cao, S., Yang, X., Gao, K., Jiang, Z., Hu, S., & Wang, L. (2025). Impact of low-dose amino acid-chelated trace minerals on performance, antioxidant capacity, and fecal excretion in growing-finishing pigs. Animals, 15(9), 1213. https://doi.org/10.3390/ani15091213
Zhang, K. K., Han, M. M., Dong, Y. Y., Miao, Z. Q., Zhang, J. Z., Song, X. Y., Feng, Y., Li, H. F., Zhang, L. H., Wei, Q. Y., Xu, J. P., Gu, D. C., & Li, J. H. (2021). Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal, 15(12), 100401. https://doi.org/10.1016/j.animal.2021.100401
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Hysla Milena Cunha Cardoso

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
