Benefícios da suplementação de minerais traço organicamente complexados (Zn, Cu, Mn e Fe) em aves e suínos: Uma mini-revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v14i9.49508

Palavras-chave:

Poedeiras, Frangos de corte, Suínos, Minerais Orgânicos, Sustentabilidade.

Resumo

O objetivo desta revisão é fornecer uma atualização concisa sobre os benefícios observados ao suplementar minerais orgânicos como zinco, cobre, manganês e ferro na indústria avícola e suinícola, com foco em minerais complexados com aminoácidos não específicos e oligopeptídeos. Foi realizada uma pesquisa qualitativa do tipo revisão narrativa da literatura. Os microminerais desempenham várias funções essenciais nos animais de produção. A suplementação com microminerais complexados a aminoácidos não específicos ou pequenos peptídeos pode melhorar a espessura e a cor da casca dos ovos em galinhas poedeiras, prevenir problemas de qualidade da carne em frangos de corte e manter a capacidade antioxidante em suínos. Além de melhorar os aspectos produtivos e sanitários, o uso de minerais orgânicos está associado a uma menor excreção fecal desses nutrientes, o que contribui para reduzir os impactos ambientais negativos, como prejuízos para o crescimento das plantas, à microbiota do solo e ao equilíbrio ecológico em geral. Pode-se concluir que o uso de minerais orgânicos é uma alternativa nutricional com potencial para promover a eficiência e reduzir os impactos ambientais negativos na indústria avícola e suinícola.

Referências

Alrubaye, A. A. K., Ekesi, N. S., Hasan, A., Elkins, E., Ojha, S., Zaki, S., Dridi, S., Wideman, R. F., Rebollo, M. A., & Rhoads, D. D. (2020). Chondronecrosis with osteomyelitis in broilers: Further defining lameness-inducing models with wire or litter flooring to evaluate protection with organic trace minerals. Poultry Science, 99(11), 5422–5429. https://doi.org/10.1016/j.psj.2020.08.027

Aragão, F. B., Galter, I. N., Grecco, K. D., Coelho, E. J. R., Da Silva, T. T., Bonomo, M. M., Fernandes, M. N., & Matsumoto, S. T. (2024). Toxic risk evaluation of effluents from a swine biodigester in the plant models Lactuca sativa and Allium cepa. Environmental Monitoring and Assessment, 196(1), 64. https://doi.org/10.1007/s10661-023-12173-x

Ashmead, H. D. (2012). Amino acid chelation in human and animal nutrition (1st ed). Taylor & Francis Group.

Bernstein, R. S., Nevalainen, T., Schraer, R., & Schraer, H. (1968). Intracellular distribution and role of carbonic anhydrase in the avian (Gallus domesticus) shell gland mucosa. Biochimica et Biophysica Acta (BBA) - Enzymology, 159(2), 367–376. https://doi.org/10.1016/0005-2744(68)90085-5

Butterworth, A., Arnould, C., & Niekerk, T. F. (Orgs.). (2009). Assessment protocol for poultry. Welfare Quality Consortium.

Chae, H. S., Singh, N. K., Yoo, Y. M., Ahn, C. N., Jeong, S. G., Ham, J. S., & Kim, D. H. (2007). Meat quality and storage characteristics depending on pse status of broiler breast meat. Asian-Australasian Journal of Animal Sciences, 20(4), 582–587. https://doi.org/10.5713/ajas.2007.582

Chen, J., Tellez, G., Escobar, J., & Vazquez-Anon, M. (2017). Impact of trace minerals on wound healing of footpad dermatitis in broilers. Scientific Reports, 7(1), 1894. https://doi.org/10.1038/s41598-017-02026-2

Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C., & Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science, 9, 920418. https://doi.org/10.3389/fvets.2022.920418

Elnesr, S. S., Mahmoud, B. Y., Da Silva Pires, P. G., Moraes, P., Elwan, H. A. M., El-Shall, N. A., El-Kholy, M. S., & Alagawany, M. (2024). Trace minerals in laying hen diets and their effects on egg quality. Biological Trace Element Research, 202(12), 5664–5679. https://doi.org/10.1007/s12011-024-04121-8

Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., & Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science, 162, 108025. https://doi.org/10.1016/j.meatsci.2019.108025

Li, M., Bao, K., Wang, H., Dai, Y., Wu, S., Yan, K., Liu, S., Yuan, Q., & Lu, J. (2024). Distribution and ecological risk assessment of nutrients and heavy metals in the coastal zone of yantai, china. Water, 16(5), 760. https://doi.org/10.3390/w16050760

Li, Y., Liu, Y., Mu, C., Zhang, C., Yu, M., Tian, Z., Deng, D., & Ma, X. (2024). Magnolol-driven microbiota modulation elicits changes in tryptophan metabolism resulting in reduced skatole formation in pigs. Journal of Hazardous Materials, 467, 133423. https://doi.org/10.1016/j.jhazmat.2024.133423

Liu, B., Xiong, P., Chen, N., He, J., Lin, G., Xue, Y., Li, W., & Yu, D. (2016). Effects of replacing of inorganic trace minerals by organically bound trace minerals on growth performance, tissue mineral status, and fecal mineral excretion in commercial grower-finisher pigs. Biological Trace Element Research, 173(2), 316–324. https://doi.org/10.1007/s12011-016-0658-7

Mellor, D. J., Beausoleil, N. J., Littlewood, K. E., McLean, A. N., McGreevy, P. D., Jones, B., & Wilkins, C. (2020). The 2020 five domains model: Including human–animal interactions in assessments of animal welfare. Animals, 10(10), 1870. https://doi.org/10.3390/ani10101870

Miotto, A., Ceretta, C. A., Brunetto, G., Nicoloso, F. T., Girotto, E., Farias, J. G., Tiecher, T. L., De Conti, L., & Trentin, G. (2014). Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant and Soil, 374(1–2), 593–610. https://doi.org/10.1007/s11104-013-1886-7

Nalon, E., Conte, S., Maes, D., Tuyttens, F. A. M., & Devillers, N. (2013). Assessment of lameness and claw lesions in sows. Livestock Science, 156(1–3), 10–23. https://doi.org/10.1016/j.livsci.2013.06.003

Nie, X., Yin, Y., Lu, Q., Zhao, F., Dai, Y., Wang, R., Ji, Y., Zhang, H., & Zhu, C. (2025). The potential of supplementing compound organic trace elements at lower levels in Chinese yellow-feathered broiler diets, Part I: Impacts on plasma biochemical parameters, antioxidant capacity, carcass traits, meat quality, and tissue mineral deposition. Poultry Science, 104(1), 104580. https://doi.org/10.1016/j.psj.2024.104580

Nie, X., Zhao, F., Yin, Y., Lu, Q., Dai, Y., Wang, R., Ji, Y., Zhang, H., & Zhu, C. (2025). The potential of supplementing compound organic trace elements at lower levels in Chinese yellow- feathered broiler diets, part II: Impacts on growth performance, gut health, intestinal microbiota, and fecal mineral excretion. Poultry Science, 104(2), 104797. https://doi.org/10.1016/j.psj.2025.104797

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM

Rossi, P., Rutz, F., Anciuti, M. A., Rech, J. L., & Zauk, N. H. F. (2007). Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. Journal of Applied Poultry Research, 16(2), 219–225. https://doi.org/10.1093/japr/16.2.219

Sampath, V., Sureshkumar, S., Seok, W. J., & Kim, I. H. (2023). Role and functions of micro and macro-minerals in swine nutrition: A short review. Journal of Animal Science and Technology, 65(3), 479–489. https://doi.org/10.5187/jast.2023.e9

Santos, M. J. B., Ludke, M. C. M. M., Silva, L. M., Rabello, C. B. V., Barros, M. R., Costa, F. S., Santos, C. S., & Wanderley, J. S. S. (2024). Complexed amino acid minerals vs. bis-glycinate chelated minerals: Impact on the performance of old laying hens. Animal Nutrition, 16, 395–408. https://doi.org/10.1016/j.aninu.2023.11.006

Santos, M. J. B., Rabello, C. B. V., Wanderley, J. S. S., Ludke, M. C. M. M., Barros, M. R., Costa, F. S., Santos, C. S., & Fireman, A. K. (2024). Levels of substitution of inorganic mineral to amino acids complexed minerals on old laying hens. Scientific Reports, 14(1), 24803. https://doi.org/10.1038/s41598-024-75897-x

Smith, V. H. (2009). Eutrophication. Em Encyclopedia of Inland Waters (p. 61–73). Elsevier. https://doi.org/10.1016/B978-012370626-3.00234-9

Studer, J. M., Kiefer, Z. E., Goetz, B. M., Keating, A. F., Baumgard, L. H., Rambo, Z. J., Schweer, W. P., Wilson, M. E., Rapp, C., & Ross, J. W. (2021). Impact of manganese amino acid complex on tissue-specific trace mineral distribution and corpus luteum function in gilts. Journal of Animal Science, 99(8), skab155. https://doi.org/10.1093/jas/skab155

Studer, J. M., Schweer, W. P., Gabler, N. K., & Ross, J. W. (2022). Functions of manganese in reproduction. Animal Reproduction Science, 238, 106924. https://doi.org/10.1016/j.anireprosci.2022.106924

Thomaz, M. C., Watanabe, P. H., Pascoal, L. A. F., Assis, M. M., Ruiz, U. S., Amorim, A. B., Silva, S. Z., Almeida, V. V., Melo, G. M. P., & Robles-Huaynate, R. A. (2015). Inorganic and organic trace mineral supplementation in weanling pig diets. Anais da Academia Brasileira de Ciências, 87(2), 1071–1081. https://doi.org/10.1590/0001-3765201520140154

Van Den Brand, H., Hubers, T., Van Den Anker, I., Torres, C. A., Frehen, E., Ooms, M., Arts, J., Laurenssen, B. F. A., Heetkamp, M. J. W., Kemp, B., & Molenaar, R. (2023). Effects of trace minerals source in the broiler breeder diet and eggshell translucency on embryonic development of the offspring. Poultry Science, 102(3), 102455. https://doi.org/10.1016/j.psj.2022.102455

Varagka, N., Lisgara, M., Skampardonis, V., Psychas, V., & Leontides, L. (2016). Partial substitution, with their chelated complexes, of the inorganic zinc, copper and manganese in sow diets reduced the laminitic lesions in the claws and improved the morphometric characteristics of the hoof horn of sows from three Greek herds. Porcine Health Management, 2(1), 26. https://doi.org/10.1186/s40813-016-0040-3

Vieira, R., Ferket, P., Malheiros, R., Hannas, M., Crivellari, R., Moraes, V., & Elliott, S. (2020). Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. British Poultry Science, 61(5), 574–582. https://doi.org/10.1080/00071668.2020.1764908

Wang, C., Wu, Y., Shu, D., Wei, H., Zhou, Y., & Peng, J. (2019). An analysis of culling patterns during the breeding cycle and lifetime production from the aspect of culling reasons for gilts and sows in southwest china. Animals, 9(4), 160. https://doi.org/10.3390/ani9040160

Welfare Quality® assessment protocol for poultry (broilers, laying hens). Welfare Quality® Consortium, Lelystad, Netherlands. Disponível em: . Acesso em: 10 jul. 2024.

Wyszkowska, J., Boros-Lajszner, E., Borowik, A., Baćmaga, M., Kucharski, J., & Tomkiel, M. (2016). Implication of zinc excess on soil health. Journal of Environmental Science and Health, Part B, 51(5), 261–270. https://doi.org/10.1080/10934529.2015.1128726

Xiong, Y., Zhao, F., Li, Y., Wu, Q., Xiao, H., Cao, S., Yang, X., Gao, K., Jiang, Z., Hu, S., & Wang, L. (2025). Impact of low-dose amino acid-chelated trace minerals on performance, antioxidant capacity, and fecal excretion in growing-finishing pigs. Animals, 15(9), 1213. https://doi.org/10.3390/ani15091213

Zhang, K. K., Han, M. M., Dong, Y. Y., Miao, Z. Q., Zhang, J. Z., Song, X. Y., Feng, Y., Li, H. F., Zhang, L. H., Wei, Q. Y., Xu, J. P., Gu, D. C., & Li, J. H. (2021). Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal, 15(12), 100401. https://doi.org/10.1016/j.animal.2021.100401

Downloads

Publicado

2025-09-28

Edição

Seção

Artigos de Revisão

Como Citar

Benefícios da suplementação de minerais traço organicamente complexados (Zn, Cu, Mn e Fe) em aves e suínos: Uma mini-revisão. Research, Society and Development, [S. l.], v. 14, n. 9, p. e9514949508, 2025. DOI: 10.33448/rsd-v14i9.49508. Disponível em: https://rsdjournal.org/rsd/article/view/49508. Acesso em: 5 dez. 2025.