Panorama de los compósitos poliméricos reforzados con fibras vegetales e impresos mediante Modelado por Deposición Fundida (MDF): Una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i12.50366

Palabras clave:

Fabricación aditiva, Fibras vegetales, Compuestos poliméricos, Modelado por Deposición Fundida (FDM), Construcción sostenible, Ácido Poliláctico (PLA).

Resumen

La construcción civil representa una parte significativa de las emisiones de CO₂ y del consumo de recursos naturales, lo que ha impulsado la búsqueda de materiales con menor impacto ambiental. Este estudio tuvo como objetivo evaluar el desempeño y el potencial de aplicación de compósitos poliméricos reforzados con fibras vegetales en la construcción sostenible, mediante una revisión sistemática realizada según las directrices PRISMA. Se efectuaron búsquedas en las bases de datos ScienceDirect, Web of Science y Dimensions, considerando el período de 2018 a 2024, totalizando 15.482 artículos, de los cuales 50 cumplieron los criterios de selección. Los resultados muestran un predominio de matrices a base de ácido poliláctico (PLA) y de fibras lignocelulósicas como madera, soja, cáñamo, lino, bambú, curauá, kenaf, yute y residuos de aceite de palma. La incorporación de fibras vegetales contribuye al aumento del módulo de elasticidad y, en condiciones optimizadas del contenido de fibra añadido, del tratamiento superficial y de los parámetros de impresión, también contribuye a la resistencia a tracción y a flexión, además de permitir estructuras celulares ligeras con buena capacidad de absorción de energía y, en algunos casos, un desempeño acústico relevante. Sin embargo, persisten vacíos relacionados con el comportamiento físico-mecánico de la materia prima, la estandarización de los métodos de ensayo, la comparación directa con materiales convencionales y la evaluación del ciclo de vida en condiciones reales de uso. La síntesis realizada indica que los compósitos PLA–fibras vegetales impresos por FDM representan una ruta prometedora para el desarrollo de paneles, núcleos sándwich, revestimientos y elementos arquitectónicos personalizados, contribuyendo a una producción más limpia en el sector de la construcción.

Referencias

Abdul Azam, F. A., Tharazi, I., Sulong, A. B., Che Omar, R., & Muhamad, N. (2024). Mechanical durability and degradation characteristics of long kenaf-reinforced PLA composites fabricated using an eco-friendly method. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2024.101820

Anandkumar, R., Ramesh Babu, S., & Sathyamurthy, R. (2021). Investigations on the mechanical properties of natural fiber granulated composite using hybrid additive manufacturing: A novel approach. Advances in Materials Science and Engineering. https://doi.org/10.1155/2021/5536171

Antony, S., Cherouat, A., & Montay, G. (2020). Fabrication and characterization of hemp fibre based 3D printed honeycomb sandwich structure by FDM process. Applied Composite Materials. https://doi.org/10.1007/s10443-020-09837-z

Asheghi-Oskooee, R., Morsali, P., Mohammadi-Roshandeh, J., & Hemmati, F. (2024). Tailoring interfacial adhesion and mechanical performance of biocomposites based on poly(lactic acid)/rice straw by using maleic anhydride through reactive extrusion process. Journal of Applied Polymer Science. https://doi.org/10.1002/app.55153

Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2019.106956

Balla, V. K., Tadimeti, J. G. D., Sudan, K., Satyavolu, J., & Kate, K. H. (2020). First report on fabrication and characterization of soybean hull fiber: Polymer composite filaments for fused filament fabrication. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-020-00138-2

Balla, V. K., Kate, K. H., Tadimeti, J. G. D., & Satyavolu, J. (2020). Influence of soybean hull fiber concentration on the water absorption and mechanical properties of 3D-printed thermoplastic copolyester/soybean hull fiber composites. Journal of Materials Engineering and Performance. https://doi.org/10.1007/s11665-020-05021-3

Bermudo Gamboa, C., Martín-Béjar, S., Bañón García, F., & Sevilla Hurtado, L. (2024). Enhancing fatigue resistance of polylactic acid through natural reinforcement in material extrusion. Polymers. https://doi.org/10.3390/polym16172422

Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., Evtushenko, A., El’shaeva, D., & Chernil’nik, A. (2023). Improving the physical and mechanical characteristics of modified aerated concrete by reinforcing with plant fibers. Fibers. https://doi.org/10.3390/fib11040033

Bierach, C., Coelho, A. A., Turrin, M., Asut, S., & Knaack, U. (2023). Wood-based 3D printing: Potential and limitation to 3D print building elements with cellulose and lignin. Construction Innovation. https://doi.org/10.1007/s44150-023-00088-7

Billings, C., Siddique, R., Sherwood, B., Hall, J., & Liu, Y. (2023). Additive manufacturing and characterization of sustainable wood fiber-reinforced green composites. Journal of Composites Science. https://doi.org/10.3390/jcs7120489

Cavalcanti, D. K. K., Neto, J. S. S., de Queiroz, H. F. M., Wu, Y., Neto, V. F. S., & Banea, M. D. (2022). Development and mechanical characterization of short curauá fiber-reinforced PLA composites made via fused deposition modeling. Polymers. https://doi.org/10.3390/polym14225047

Cisneros-López, E. O., Pal, A. K., Rodriguez, A. U., Wu, F., Misra, M, Mielewski, D. F., Kiziltas, A., & Mohanty, A. K. (2019). Recycled poly(lactic acid)-based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability. https://doi.org/10.1016/j.mtsust.2019.100027

Doğru, A., Yılancıoğlu, S., Ülkü, G., Şentürk Turan, B., & Seydibeyoğlu, M. Ö. (2022). Comparison of wood fiber reinforced PLA matrix bio-composites produced by injection molding and fused filament fabrication (FFF) methods. Hittite Journal of Science and Engineering. https://doi.org/10.15671/hjbc.1052654

Dönitz, A., Köllner, A., Richter, T., Löschke, O., Auhl, D., & Völlmecke, C. (2023). Additive manufacturing of biodegradable hemp-reinforced polybutylene succinate (PBS) and its mechanical characterization. Polymers. https://doi.org/10.3390/polym15102271

Easwaramoorthi, M., Giridharan, A., Nandhakumar, K., Pradeep, E., & Rangith, G. (2024). Mechanical characterization and predictive analysis of flax fiber/PLA honeycomb sandwich structures in FDM additive manufacturing. [Artigo científico; DOI não informado na sua tabela]

Egorov, S., Tarasova, T., & Terekhina, S. (2020). Production technology for polymeric composite materials by additive manufacturing methods. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/971/2/022006

Faidallah, R. F., Hanon, M. M., Salman, N. D., Ibrahim, Y., Noman Babu, M., Gaaz, T. S., Szakál, Z., & Oldal, I. (2024). Development of fiber-reinforced polymer composites for additive manufacturing and multi-material structures in sustainable applications. Processes. https://doi.org/10.3390/pr12102217

Faleschini, F., Trento, D., Masoomi, M., Pellegrino, C., & Zanini, M. A. (2023). Sustainable mixes for 3D printing of earth-based constructions. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2023.132496

Jakab, S. K., Singh, T., Fekete, I., & Lendvai, L. (2024). Agricultural by-product filled poly(lactic acid) biocomposites with enhanced biodegradability: The effect of flax seed meal and rapeseed straw. Journal of Composite Materials Communications. https://doi.org/10.1016/j.jcomc.2024.100464

Jamadi, A. H., Razali, N., Dhar Malingam, S., & Mohammad Taha, M. (2023). Effect of fibre size on mechanical properties and surface roughness of PLA composites by using fused deposition modelling (FDM). Journal of Renewable Materials. https://doi.org/10.32604/jrm.2023.028280

Jiang, Y., Yarin, A. L., & Pan, Y. (2020). Printable highly transparent natural fiber composites. Materials Letters. https://doi.org/10.1016/j.matlet.2020.128290

Landes, S., & Letcher, T. (2020). Mechanical strength of bamboo filled PLA composite material in fused filament fabrication. Journal of Composites Science. https://doi.org/10.3390/jcs4040159

Lekrine, A., Belaadi, A., Dembri, I., Jawaid, M., Ismail, A. S., Abdullah, M. M. S., Chai, B. X., Al-Khawlani, A., & Ghernaout, D. (2024). Thermomechanical and structural analysis of green hybrid composites based on polylactic acid/biochar/treated W. filifera palm fibers. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2024.06.033

Liu, Z., Lei, Q., & Xing, S. (2019). Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2019.06.034

Lombardi, R., Di Maio, L., Pepe, M., Paolillo, B., & Martinelli, E. (2024). Influence of PLA impregnation on the performances of vegetable fibers for lime-based composites. Procedia Structural Integrity. https://doi.org/10.1016/j.prostr.2024.09.258

Mastura, M. T., Nadlene, R., Jumaidin, R., Abdul Kudus, S. I., Mansor, M. R., & Firdaus, H. M. S. (2021). Concurrent material selection of natural fibre filament for fused deposition modeling using integration of analytic hierarchy process/analytic network process. Journal of Renewable Materials. https://doi.org/10.32604/jrm.2022.018082

Muthe, L. P., Pickering, K., & Gauss, C. (2024). Polylactide composites reinforced with pre-impregnated natural fibre and continuous cellulose yarns for 3D printing applications. Materials. https://doi.org/10.3390/ma17225554

Özdemir, H. N., Sözen, A., Demir, M., Doğru, A., & Seki, Y. (2023). Production of waste jute doped PLA (polylactic acid) filament for FFF: Effect of pulverization. International Journal of 3D Printing Technologies and Digital Industry. https://doi.org/10.46519/ij3dptdi.1213659

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.

Rech, A., Chiujdea, R., Colmo, C., Rossi, G., Nicholas, P., Tamke, M., Ramsgaard Thomsen, M., & Daugaard, A. E. (2022). Waste-based biopolymer slurry for 3D printing targeting construction elements. Materials Today Communications. https://doi.org/10.1016/j.mtcomm.2022.104963

Samim, S., Mahdi, E., Mustapha, M., Rusli, A., & Shakoor, R. A. (2024). Quasi-static axial crushing investigation of filament-wound eco-friendly energy-absorbing glass fiber and jute fiber composite structures. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2024.05.040

Santos, A. J. G., Ribeiro, M. M., de C. Corrêa, A., Rodrigues, J. da S., Silva, D. S., Junio, R. F. P., & Monteiro, S. N. (2024). Morphological, chemical and mechanical properties of hybrid polyester composites reinforced with bamboo fibers and kaolin waste. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2024.03.003

Sekar, V., Zarrouq, M., & Namasivayam, S. N. (2021). Development and characterization of oil palm empty fruit bunch fibre reinforced polylactic acid filaments for fused deposition modeling. Journal of Mechanical Engineering (JMechE), 18(1), 151–167. (DOI informado como indisponível na sua tabela)

Sekar, V., Eh Noum, S. Y., Sivanesan, S., Putra, A., Kassim, D. H., Wong, Y. S., & Chin, K. C. (2021). Effect of perforation volume on acoustic absorption of 3D-printed micro-perforated panels made of polylactic acid reinforced with wood fibers. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/2120/1/012039

Sekar, V., Eh Noum, S. Y., Sivanesan, S., Putra, A., Chin Vui Sheng, D. D., & Kassim, D. H. (2021). Effect of thickness and infill density on acoustic performance of 3D printed panels made of natural fiber reinforced composites. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1944426

Sekar, V., Eh Noum, S. Y., Putra, A., Sivanesan, S., & Chin Vui Sheng, D. D. (2022). Fabrication of light-weighted acoustic absorbers made of natural fiber composites via additive manufacturing. International Journal of Lightweight Materials and Manufacture. https://doi.org/10.1016/j.ijlmm.2022.06.007

Sharum, M. A., Rajendran, T. K., Maidin, S., & Ismail, S. (2024). Investigation of oil palm fiber reinforced polylactic acid composite extruded filament quality. Journal of Physics: Materials. https://doi.org/10.1088/2631-8695/ad582a

Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed). Editora Érica.

Shoeb, M., Kumar, L., & Haleem, A. (2023). 3D-printed medical surgical cotton fabric–polylactic acid biocomposite: A feasibility study. Sustainable Operations and Computers. https://doi.org/10.1016/j.susoc.2023.07.001

Siddiqui, V. U., Yusuf, J., Sapuan, S. M., Hasan, M. Z., Mudah Bistari, M. M., & Mohammadsalih, Z. G. (2024). Mechanical properties and flammability analysis of wood fiber filled polylactic acid (PLA) composites using additive manufacturing. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2024.2409868

Sippach, T., Dahy, H., Uhlig, K., Grisin, B., Carosella, S., & Middendorf, P. (2020). Structural optimization through biomimetic-inspired material-specific application of plant-based natural fiber-reinforced polymer composites (NFRP) for future sustainable lightweight architecture. Polymers. https://doi.org/10.3390/polym12123048

Soh, E., Chew, Z. Y., Saeidi, N., Javadian, A., Hebel, D., & Le Ferrand, H. (2020). Development of an extrudable paste to build mycelium-bound composites. Materials & Design. https://doi.org/10.1016/j.matdes.2020.109058

Subramani, R., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., Rajeswari, N., Haridas, D., John Rajan, A., & Kumar, A. P. (2024). Exploring the use of biodegradable polymer materials in sustainable 3D printing. Applied Computing and Engineering. https://doi.org/10.59429/ace.v7i2.3870

Taborda-Ríos, J. A., López-Botello, O., Zambrano-Robledo, P., Reyes-Osorio, L. A., & Garza, C. (2020). Mechanical characterisation of a bamboo fibre/polylactic acid composite produced by fused deposition modelling. Journal of Reinforced Plastics and Composites. https://doi.org/10.1177/0731684420938434

Thirugnanasamabandam, A., Prabhu, B., Mageswari, V., Murugan, M., Ramachandran, K., & Kadirgama, K. (2024). Wood flour/ceramic reinforced polylactic acid based 3D-printed functionally graded structural material for integrated engineering applications: A numerical and experimental characteristic investigation. [Artigo científico; DOI não informado na sua tabela]

Vinod, A., Tengsuthiwat, J., Vijay, R., Sanjay, M. R., & Siengchin, S. (2024). Advancing additive manufacturing: 3D-printing of hybrid natural fiber sandwich (Nona/Soy–PLA) composites through filament extrusion and its effect on thermomechanical properties. Polymer Composites. https://doi.org/10.1002/pc.28302

Wang, K., Lin, H., Le Duigou, A., Cai, R., Huang, Y., Cheng, P., Zhang, H., & Peng, Y. (2023). Geometric accuracy and energy absorption characteristics of 3D-printed continuous ramie fiber reinforced thin-walled composite structures. Chinese Journal of Mechanical Engineering. https://doi.org/10.1186/s10033-023-00982-7

Wu, Y., Yang, Z., Madiyar, F., Jiang, Y., & Namilae, S. (2024). Hydroxyapatite functionalized natural fiber-reinforced composites: Interfacial modification and additive manufacturing. Polymer Composites. https://doi.org/10.1002/pc.28974

Xing, D., Wang, H., Tao, Y., Zhang, J., Li, P., & Koubaa, A. (2024). 3D-printing continuous plant fiber/polylactic acid composites with lightweight and high strength. Additive Manufacturing. https://doi.org/10.1016/j.addma.2024.103606

Yaguchi, Y., Takeuchi, K., Waragai, T., & Tateno, T. (2020). Durability evaluation of an additively manufactured biodegradable composite with continuous natural fiber in various conditions reproducing usage environment. International Journal of Automation Technology. https://doi.org/10.20965/ijat.2020.p0959

Publicado

2025-12-18

Número

Sección

Revisiones

Cómo citar

Panorama de los compósitos poliméricos reforzados con fibras vegetales e impresos mediante Modelado por Deposición Fundida (MDF): Una revisión sistemática. Research, Society and Development, [S. l.], v. 14, n. 12, p. e130141250366, 2025. DOI: 10.33448/rsd-v14i12.50366. Disponível em: https://rsdjournal.org/rsd/article/view/50366. Acesso em: 2 jan. 2026.