Evaluación estructural, morfológica y química de grafeno comercial mediante diferentes técnicas analíticas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v15i1.50462

Palabras clave:

Nanomaterial, Grafeno, Caracterización, Estructura.

Resumen

El grafeno es un nanomaterial bidimensional constituido por una sola capa de átomos de carbono organizados en una red hexagonal, cuyas propiedades fueron descritas teóricamente por Wallace en 1946. Actualmente, se destaca por su elevada resistencia mecánica, alta conductividad eléctrica y térmica y gran área superficial específica, características que lo convierten en prometedor para diversas aplicaciones tecnológicas. Sin embargo, la obtención y caracterización del grafeno aún representan desafíos, ya que los defectos estructurales, las impurezas y las variaciones en el método de síntesis pueden comprometer sus propiedades. En este contexto, este estudio tuvo como objetivo caracterizar un grafeno comercial mediante técnicas estructurales, morfológicas y químicas. Se emplearon espectroscopía infrarroja por transformada de Fourier (FT-IR), difracción de rayos X (DRX), espectroscopía Raman, microscopía electrónica de barrido (MEB) y de transmisión (MET). Los resultados indicaron la predominancia de una estructura bien organizada, con presencia residual de grupos oxigenados, apilamiento parcial de las láminas y un número moderado de capas. El análisis Raman evidenció una baja densidad de defectos y una buena organización de la red de carbono, mientras que las micrografías revelaron láminas finas, lamelares y parcialmente superpuestas. De este modo, la adecuada caracterización del grafeno resulta conveniente y necesaria para la comprensión de sus propiedades y, en consecuencia, para orientar de manera eficiente su aplicación en diferentes sistemas y tecnologías.

Referencias

ASTM. (2015). ASTM INTERNATIONAL. ASTM E1508-15. Standard guide for selection and installation of materials for testing of electrical resistivity using the four-point probe method. West Conshohocken, PA: ASTM International.

Ajala, O. J. et al. (2022). A critical review on graphene oxide nanostructured material: Properties, synthesis, characterization and application in water and wastewater treatment. Environmental Nanotechnology, Monitoring & Management. 18, 100673.

Cancado, L. G. et al. (2006). General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters. 88, 163106.

Cancado, L. G. et al. (2011). Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters. 11(8), 3190–6.

Chen, Q. et al. (2022). Effect of GO agglomeration on the mechanical properties of graphene oxide and nylon 66 composites and micromechanical analysis. Polymer Composites. 43(11), 8356–67.

Díez-Pascual, A. M. (2022). Graphene-based polymer nanocomposites: recent advances. Polymers, Basel. 14(10), 2102. Doi: 10.3390/polym14102102.

Dreyer, D. R. et al. (2000). The chemistry of graphene oxide. Chemical Society Reviews. 39(1), 228–40.

Ferrari, A. C. & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 61(20), 14095.

Figueiredo, B. Q. de et al. (2022). Uso do grafeno e nióbio na prática médica: uma revisão narrativa de literatura. Research, Society and Development. 11(1), e255262022. Doi: 10.33448/rsd-v11i1.25526.

Goncharova, N. N. et al. (2024). Estimation of graphene layers number and defectiveness of few-layered graphene particles by Raman spectroscopy. Advanced Materials & Technologies. 9(2), 84–90.

Husain, H. et al. (2025). Sustainable synthesis and structural characterization of carbon, graphite, graphene oxide, and reduced graphene oxide derived from coconut shells. Indonesian Journal of Chemistry. 25(6), 1768–77. Doi: 10.22146/ijc.105467.

Hutapea, J. A. A. et al. (2025). Comprehensive review of graphene synthesis techniques: advancements, challenges, and future directions. Micro. 5(3), 40. Doi: 10.3390/micro5030040.

ISO. (2017). ISO 29301:2017. Nanotechnologies — Quantification of graphene materials — Volumetric surface area measurement of graphene materials. Genebra: International Organization for Standardization (ISO).

Kumar, R., Singh, R. & Kumar, S. (2023). Recent progress in graphene-based polymer nanocomposites: processing, characterization and applications. Materials Today: Proceedings, Amsterdam. 72, 245–52. Doi: 10.1016/j.matpr.2022.11.145.

Liu, Y., Chen, W. D. & Jiang, D. Z. (2023). Effects of graphene and carbon nanotubes on mechanical enhancement and heat generation of rubber composites. In: Journal of Physics: Conference Series. IOP Publishing. p. 012038.

Liu, Y., Wang, Z. & Chen, J. (2023). Surface chemistry and interfacial interactions of graphene in polymer composites. Polymer, Amsterdam. 276, 125885. Doi: 10.1016/j.polymer.2023.125885.

May, A. et al. (2021). Grafeno: uma nova tecnologia para a agricultura. Research, Society and Development. 10(2), e128272021. Doi: 10.33448/rsd-v10i2.12827.

Mbayachi, V. B. et al. (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry. 3, 100163.

Olabi, A. G. et al. (2021). Application of graphene in energy storage device–A review. Renewable and Sustainable Energy Reviews. 135, 110026.

Pereira, F. L. A., Brito, T. M. F., Silva, L. L. W. V., Oliveira, M. M. V., Santos, E. M. S. & Silva, R. A. C. (2023). Os benefícios da utilização do grafeno na construção civil. Research, Society and Development. 12(4), e407812023. Doi: 10.33448/rsd-v12i4.40781.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (Free ebook). Santa Maria. Editora da UFSM.

Shen, L. et al. (2021). Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Science Advances. 7(37), eabg6263.

Skakunova, O. S. et al. (2023). X-ray dynamical diffraction by quasi-monolayer graphene. Scientific Reports. 13, 19432. Doi: 10.1038/s41598-023-43269-6.

Urade, A. R., Lahiri, I. & Suresh, K. S. (2023). Graphene properties, synthesis and applications: a review. JOM. 75(3), 614–30.

Vieira, J. E. D. & Villar, E. (2016). Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos. 11(2), 54–7.

Xiong, J. et al. (2019). Improving mechanical and electrical properties of fluoroelastomer nanocomposites by incorporation of low content of reduced graphene oxide via fast evaporation mixing. Polymer Composites. 40(S2), E1495–E1503.

Yildiz, M. G. et al. (2019). CO₂ capture over amine functionalized MCM-41 and SBA-15: exploratory analysis and decision tree classification of past data. Journal of CO₂ Utilization. 31, 27–42.

Yu, W. et al. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances. 10(26), 15328–45.

Zancanaro, D. A. & Polentto, M. (2022). Pirólise assistida por micro-ondas de resíduos de poliestireno expandido utilizando carvão ativado e óxido de grafeno. Research, Society and Development. 11(16), e379202022. Doi: 10.33448/rsd-v11i16.37920.

Zhang, H., Li, X. & Zhao, Y. (2024). Structure–property relationships of graphene-based polymer composites: a comprehensive review. Journal of Materials Science. 59, 3245–72. Doi: 10.1007/s10853-023-09241-6.

Zhang, Z. et al. (2025). Surface energy distribution of modified carbon black and interfacial interactions of filled rubber composites. Langmuir.

Zhou, M. et al. (2022). A multi-scale analysis on reinforcement origin of static and dynamic mechanics in graphene-elastomer nanocomposites. Composites Science and Technology. 228, 109617.

Publicado

2026-01-11

Número

Sección

Ingenierías

Cómo citar

Evaluación estructural, morfológica y química de grafeno comercial mediante diferentes técnicas analíticas. Research, Society and Development, [S. l.], v. 15, n. 1, p. e2215150462, 2026. DOI: 10.33448/rsd-v15i1.50462. Disponível em: https://rsdjournal.org/rsd/article/view/50462. Acesso em: 23 jan. 2026.