Deficiência de tiamina induzida por amprólio em camundongos fêmeas: Papel do estresse oxidativo e da inflamação
DOI:
https://doi.org/10.33448/rsd-v14i6.49065Palavras-chave:
Sinalização celular, MAPK, Comportamento, Diferenças sexuais, Trolox, Dimetilsulfóxido.Resumo
Modelos experimentais de deficiência de tiamina (DT) têm se desenvolvido principalmente em roedores machos, fazendo com que os efeitos da DT em fêmeas e a patogênese associada a distúrbios neurológicos permanecem desconhecidos. O objetivo deste artigo foi apresentar uma investigação sobre os efeitos da DT com amprólio em camundongos fêmeas, avaliando efeitos metabólicos e comportamentais, bem como a modulação da fosforilação de ERK1/2 no córtex cerebral e no tálamo. Além disso, utilizamos o antioxidante Trolox e o anti-inflamatório dimetilsulfóxido para investigar o papel do estresse oxidativo e da neuroinflamação nesse processo. Os animais foram expostos a uma dieta deficiente em tiamina com a administração adicional de amprólio (60 mg/kg) por 20 dias. Após o tratamento, observamos redução no consumo alimentar e no peso corporal dos animais, com diminuição da coordenação motora e da atividade exploratória e, paralelamente, aumento da fosforilação de ERK1/2, tanto no córtex cerebral quanto no tálamo dos animais deficientes. Animais deficientes que receberam Trolox ou dimetilsulfóxido apresentaram atenuação desses efeitos, com manutenção da coordenação motora e bloqueio total da ativação de ERK1/2. Os resultados mostram que camundongos fêmeas podem ser usados como um modelo válido de DT, compatível com outros métodos, apresentando alterações neurológicas importantes. Este estudo evidencia que, em fêmeas, a DT também envolve mecanismos de estresse oxidativo e inflamação, respondem positivamente e podem ser usadas como modelo animal.
Referências
Abdou, E., & Hazell, A. S. (2015). Thiamine Deficiency: An Update of Pathophysiologic Mechanisms and Future Therapeutic Considerations. Neurochemical Research, 40(2), 353–361. https://doi.org/10.1007/s11064-014-1430-z
Aguiar Jr., A. S., Araújo, A. L., Da-Cunha, T. R., Speck, A. E., Ignácio, Z. M., De-Mello, N., & Prediger, R. D. S. (2009). Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Research Bulletin, 79(6), 452–457. https://doi.org/http://dx.doi.org/10.1016/j.brainresbull.2009.05.005
Altemus, M. (2006). Sex differences in depression and anxiety disorders: Potential biological determinants. Hormones and Behavior, 50(4), 534–538. https://doi.org/10.1016/j.yhbeh.2006.06.031
Altemus, M., Sarvaiya, N., & Neill Epperson, C. (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 320–330. https://doi.org/10.1016/j.yfrne.2014.05.004
Bâ, A. (2012). Effects of thiamine deficiency on food intake and body weight increment in adult female and growing rats. Behavioural Pharmacology, 23(5–6), 575–581. https://doi.org/10.1097/FBP.0b013e32835724a1
Barclay, L. R., Artz, J. D., & Mowat, J. J. (1995). Partitioning and antioxidant action of the water-soluble antioxidant, Trolox, between the aqueous and lipid phases of phosphatidylcholine membranes: 14C tracer and product studies. Biochimica et Biophysica Acta, 1237(1), 77–85. http://www.ncbi.nlm.nih.gov/pubmed/7619846
Bettendorff, L. (2023). Synthetic Thioesters of Thiamine: Promising Tools for Slowing Progression of Neurodegenerative Diseases. International Journal of Molecular Sciences, 24(14), 11296. https://doi.org/10.3390/ijms241411296
Blythe, L. L., Craig, A. M., Christensen, J. M., Appell, L. H., & Slizeski, M. L. (1986). Pharmacokinetic disposition of dimethyl sulfoxide administered intravenously to horses. American Journal of Veterinary Research, 47(8), 1739–1743. http://www.ncbi.nlm.nih.gov/pubmed/3752683
Brayton, C. F. (1986). Dimethyl sulfoxide (DMSO): a review. The Cornell Veterinarian, 76(1), 61–90. http://www.ncbi.nlm.nih.gov/pubmed/3510103
Bunik, V. I., Tylicki, A., & Lukashev, N. V. (2013). Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS Journal, 280(24), 6412–6442. https://doi.org/10.1111/febs.12512
Calingasan, N. Y., & Gibson, G. E. (2000). Vascular Endothelium Is a Site of Free Radical Production and Inflammation in Areas of Neuronal Loss in Thiamine-deficient Brain. Annals of the New York Academy of Sciences, 903(1), 353–356. https://doi.org/10.1111/j.1749-6632.2000.tb06386.x
Carvalho, F. M., Pereira, S. R. C., Pires, R. G. W., Ferraz, V. P., Romano-Silva, M. A., Oliveira-Silva, I. F., & Ribeiro, A. M. (2006). Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test. Pharmacology Biochemistry and Behavior, 83(4), 481–489. https://doi.org/10.1016/j.pbb.2006.03.004
Cassiano, L. M. G., Oliveira, M. S., Pioline, J., Salim, A. C. M., & Coimbra, R. S. (2022). Neuroinflammation regulates the balance between hippocampal neuron death and neurogenesis in an ex vivo model of thiamine deficiency. Journal of Neuroinflammation, 19(1), 272. https://doi.org/10.1186/s12974-022-02624-6
Chandrakumar, A., Bhardwaj, A., & ‘t Jong, G. W. (2019). Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 153–162. https://doi.org/10.1515/jbcpp-2018-0075
Chornyy, S., Parkhomenko, J., & Chorna, N. (2007). Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells. Acta Biochimica Polonica, 54(2), 315–322. http://www.actabp.pl/pdf/2_2007/315s.pdf
Cole, T. B., Coburn, J., Dao, K., Roqué, P., Chang, Y.-C., Kalia, V., Guilarte, T. R., Dziedzic, J., & Costa, L. G. (2016). Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology, 374, 1–9. https://doi.org/10.1016/j.tox.2016.11.010
Colucci, M., Maione, F., Bonito, M. C., Piscopo, A., Di Giannuario, A., & Pieretti, S. (2008). New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. Pharmacological Research, 57(6), 419–425. https://doi.org/10.1016/j.phrs.2008.04.004
Cordova, F. M., Aguiar, A. S., Peres, T. V, Lopes, M. W., Gonçalves, F. M., Pedro, D. Z., Lopes, S. C., Pilati, C., Prediger, R. D. S., Farina, M., Erikson, K. M., Aschner, M., & Leal, R. B. (2013). Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Archives of Toxicology, 87(7), 1231–1244. https://doi.org/10.1007/s00204-013-1017-5
Cordova, F. M., Aguiar Jr., A. S., Peres, T. V, Lopes, M. W., Goncalves, F. M., Remor, A. P., Lopes, S. C., Pilati, C., Latini, A. S., Prediger, R. D., Erikson, K. M., Aschner, M., & Leal, R. B. (2012). In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS ONE, 7(3), e33057. https://doi.org/10.1371/journal.pone.0033057
Cordova, F. M., Rodrigues, A. L. S., Giacomelli, M. B. O., Oliveira, C. S., Posser, T., Dunkley, P. R., & Leal, R. B. (2004). Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Research, 998(1), 65–72. https://doi.org/10.1016/j.brainres.2003.11.012
da Silva, M. P., Lima, F. W., Moura, A. G., Nunes, J. P., de Cordova, C. A., & de Cordova, F. M. (2024). ERK1/2 modulation in the central nervous system of male and female thiamine-deficient mice with amprolium. Laboratory Animals, 58(1), 22–33. https://doi.org/10.1177/00236772231191586
Das, S. K., Patel, V. B., Basu, R., Wang, W., DesAulniers, J., Kassiri, Z., & Oudit, G. Y. (2017). Females Are Protected From Iron‐Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress. Journal of the American Heart Association, 6(1), e003456. https://doi.org/10.1161/JAHA.116.003456
de Abreu Costa, L., Henrique Fernandes Ottoni, M., Dos Santos, M. G., Meireles, A. B., Gomes de Almeida, V., de Fátima Pereira, W., Alves de Avelar-Freitas, B., & Eustáquio Alvim Brito-Melo, G. (2017). Dimethyl Sulfoxide (DMSO) Decreases Cell Proliferation and TNF-α, IFN-γ, and IL-2 Cytokines Production in Cultures of Peripheral Blood Lymphocytes. Molecules, 22(11), 1789. https://doi.org/10.3390/molecules22111789
Di Domenico, F., Lanzillotta, C., & Perluigi, M. (2024). Redox imbalance and metabolic defects in the context of Alzheimer disease. FEBS Letters, 598, 2047–2066. https://doi.org/10.1002/1873-3468.14840
Diaz, Z., Laurenzana, A., Mann, K. K., Bismar, T. A., Schipper, H. M., & Miller, W. H. (2007). Trolox enhances the anti-lymphoma effects of arsenic trioxide, while protecting against liver toxicity. Leukemia, 21(10), 2117–2127. https://doi.org/10.1038/sj.leu.2404891
Dudeja, P. K., Tyagi, S., Kavilaveettil, R. J., Gill, R., & Said, H. M. (2001). Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles. American Journal of Physiology - Cell Physiology, 281, 786–792. https://medicine.dp.ua/index.php/med/article/view/021708
Ferreira-Vieira, T. H., Freitas-Silva, D. M. de, Ribeiro, A. F., Pereira, S. R. C., & Ribeiro, Â. M. (2016). Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring. Neuroscience Letters, 617, 182–187. https://doi.org/10.1016/j.neulet.2016.01.060
Fogle, R. L., Hollenbeak, C. S., Stanley, B. A., Vary, T. C., Kimball, S. R., & Lynch, C. J. (2011). Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiological Genomics, 43(7), 346–356. https://doi.org/10.1152/physiolgenomics.00203.2010
Gomes, K. C., Lima, F. W. B., da Silva Aguiar, H. Q., de Araújo, S. S., de Cordova, C. A. S., & de Cordova, F. M. (2021). Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394(11), 2289–2307. https://doi.org/10.1007/s00210-021-02148-5
Gonsette, R. E. (2008). Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. Journal of the Neurological Sciences, 274(1–2), 48–53. https://doi.org/10.1016/j.jns.2008.06.029
Greenwood, J., & Pratt, O. E. (1985). Comparison of the effects of some thiamine analogues upon thiamine transport across the blood‐brain barrier of the rat. The Journal of Physiology, 369(1), 79–91. https://doi.org/10.1113/jphysiol.1985.sp015889
Hazell, A. S. (2009). Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochemistry International, 55(1–3), 129–135. https://doi.org/10.1016/j.neuint.2009.02.020
Hazell, A. S., & Butterworth, R. F. (2009). Update of Cell Damage Mechanisms in Thiamine Deficiency: Focus on Oxidative Stress, Excitotoxicity and Inflammation. Alcohol and Alcoholism, 44(2), 141–147. https://doi.org/10.1093/alcalc/agn120
Hazell, A. S., Faim, S., Wertheimer, G., Silva, V. R., & Marques, C. S. (2013). The impact of oxidative stress in thiamine deficiency: A multifactorial targeting issue. Neurochemistry International, 62(5), 796–802. https://doi.org/10.1016/j.neuint.2013.01.009
Hucker, H. B., Miller, J. K., Hochberg, A., Brobyn, R. D., Riordan, F. H., & Calesnick, B. (1967). Studies on the absorption, excretion and metabolism of dimethylsulfoxide (DMSO) in man. The Journal of Pharmacology and Experimental Therapeutics, 155(2), 309–317. http://www.ncbi.nlm.nih.gov/pubmed/6025521
Hughes, R. N. (2019). Sex still matters: has the prevalence of male-only studies of drug effects on rodent behaviour changed during the past decade? Behavioural Pharmacology, 30(1), 95–99. https://doi.org/10.1097/FBP.0000000000000410
Irving, E. A., Barone, F. C., Reith, A. D., Hadingham, S. J., & Parsons, A. A. (2000). Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Molecular Brain Research, 77(1), 65–75. https://doi.org/10.1016/S0169-328X(00)00043-7
Jacob, S. W., & de la Torre, J. C. (2009). Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacological Reports, 61(2), 225–235. https://doi.org/10.1016/S1734-1140(09)70026-X
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy - from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta - Proteins and Proteomics, 1754(1–2), 253–262. https://doi.org/10.1016/j.bbapap.2005.08.017
Ke, Z.-J., Degiorgio, L. A., Volpe, B. T., & Gibson, G. E. (2003). Reversal of Thiamine Deficiency-Induced Neurodegeneration. Journal of Neuropathology & Experimental Neurology, 62(2), 195–207. https://doi.org/10.1093/jnen/62.2.195
Kyriakis, J. M., & Avruch, J. (2012). Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update. Physiological Reviews, 92(2), 689–737. https://doi.org/10.1152/physrev.00028.2011
Liu, D., Ke, Z., & Luo, J. (2017). Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Molecular Neurobiology, 54(7), 5440–5448. https://doi.org/10.1007/s12035-016-0079-9
Liu, M., Alimov, A. P., Wang, H., Frank, J. A., Katz, W., Xu, M., Ke, Z.-J., & Luo, J. (2014). Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience, 267, 102–113. https://doi.org/10.1016/j.neuroscience.2014.02.033
Liu, Y., Zhang, B., Duan, R., & Liu, Y. (2024). Mitochondrial DNA Leakage and cGas/STING Pathway in Microglia: Crosstalk Between Neuroinflammation and Neurodegeneration. Neuroscience, 548, 1–8. https://doi.org/10.1016/j.neuroscience.2024.04.009
Manzetti, S., Zhang, J., & Van Der Spoel, D. (2014). Thiamin function, metabolism, uptake, and transport. Biochemistry, 53(5), 821–835. https://doi.org/10.1021/bi401618y
Medeiros, R. de C. N., Moraes, J. O., Rodrigues, S. D. C., Pereira, L. M., Aguiar, H. Q. da S., de Cordova, C. A. S., Yim Júnior, A., & de Cordova, F. M. (2020). Thiamine Deficiency Modulates p38MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochemical Research, 45(4), 940–955. https://doi.org/10.1007/s11064-020-02975-7
Moraes, J. O., Rodrigues, S. D. C., Pereira, L. M., Medeiros, R. de C. N., de Cordova, C. A. S., & de Cordova, F. M. (2018). Amprolium exposure alters mice behavior and metabolism in vivo. Animal Models and Experimental Medicine, 1(4), 272–281. https://doi.org/10.1002/ame2.12040
Nardone, R., Höller, Y., Storti, M., Christova, M., Tezzon, F., Golaszewski, S., Trinka, E., & Brigo, F. (2013). Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal. The Scientific World Journal, 2013, 1–8. https://doi.org/10.1155/2013/309143
Netto, C. A., Sanches, E., Odorcyk, F. K., Duran-Carabali, L. E., & Weis, S. N. (2017). Sex-dependent consequences of neonatal brain hypoxia-ischemia in the rat. Journal of Neuroscience Research, 95(1–2), 409–421. https://doi.org/10.1002/jnr.23828
Nogueira, A. P. A., Souza, R. I. C., Santos, B. S., Pinto, A. P., Ribas, N. L. K. S., Lemos, R. A. A., & de Sant’Ana, F. J. F. (2010). Polioencefalomalacia experimental induzida por amprólio em bovinos. Pesquisa Veterinaria Brasileira, 30(8), 631–636. https://doi.org/10.1590/S0100-736X2010000800004
Patti, C. L., Frussa-Filho, R., Silva, R. H., Carvalho, R. C., Kameda, S. R., Takatsu-Coleman, A. L., Cunha, J. L. S., & Abílio, V. C. (2005). Behavioral characterization of morphine effects on motor activity in mice. Pharmacology Biochemistry and Behavior, 81(4), 923–927. https://doi.org/10.1016/j.pbb.2005.07.004
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM. http://repositorio.ufsm.br/handle/1/15824
Pereira, L. M., Aguiar, H. Q. da S., Rodrigues, S. D. C., Moraes, J. O., Medeiros, R. de C. N., de Cordova, C. A. S., & de Cordova, F. M. (2017). Amprolium-induced thiamine deficiency in mice: evaluation of a practical model by oral administration. Acta Veterinaria Brasilica, 11(3), 164–174. https://doi.org/10.21708/avb.2017.11.0.7101
Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83(2), 346–356. https://doi.org/10.1016/0003-2697(77)90043-4
Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463(1–3), 3–33. http://www.ncbi.nlm.nih.gov/pubmed/12600700
Raspor, P., Plesnicar, S., Gazdag, Z., Pesti, M., Miklavcic, M., Lah, B., Logarmarinsek, R., & Poljsak, B. (2005). Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biology International, 29(1), 57–63. https://doi.org/10.1016/j.cellbi.2004.11.010
Reeves, P. G., Nielsen, F. H., & Fahey, G. C. (1993). AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. The Journal of Nutrition, 123(11), 1939–1951. https://doi.org/10.1093/jn/123.11.1939
Rietjens, I. M. C. M., Vervoort, J., Maslowska-Górnicz, A., Van den Brink, N., & Beekmann, K. (2018). Use of proteomics to detect sex-related differences in effects of toxicants: implications for using proteomics in toxicology. Critical Reviews in Toxicology, 48(8), 666–681. https://doi.org/10.1080/10408444.2018.1509941
Rindi, G., Patrini, C., Nauti, A., Bellazzi, R., & Magni, P. (2003). Three thiamine analogues differently alter thiamine transport and metabolism in nervous tissue: an in vivo kinetic study using rats. Metabolic Brain Disease, 18(4), 245–263. http://www.ncbi.nlm.nih.gov/pubmed/15128183
Salort, G., Álvaro-Bartolomé, M., & García-Sevilla, J. A. (2019). Ketamine-induced hypnosis and neuroplasticity in mice is associated with disrupted p-MEK/p-ERK sequential activation and sustained upregulation of survival p-FADD in brain cortex: Involvement of GABAA receptor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 121–131. https://doi.org/10.1016/j.pnpbp.2018.07.006
Sant’Ana, F. J. F., Rissi, D. R., Lucena, R. B., Lemos, R. A. A., Nogueira, A. P. A., & Barros, C. S. L. (2009). Polioencefalomalacia em bovinos: Epidemiologia, sinais clínicos e distribuição das lesões no encéfalo. Pesquisa Veterinaria Brasileira, 29(7), 487–497. https://doi.org/10.1590/S0100-736X2009000700002
Santos, N. C., Figueira-Coelho, J., Martins-Silva, J., & Saldanha, C. (2003). Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochemical Pharmacology, 65(7), 1035–1041. https://doi.org/10.1016/S0006-2952(03)00002-9
Satoh, K., Kadofuku, T., & Sakagami, H. (1997). Effect of Trolox, a synthetic analog of alpha-tocopherol, on cytotoxicity induced by UV irradiation and antioxidants. Anticancer Research, 17(4A), 2459–2463. http://www.ncbi.nlm.nih.gov/pubmed/9252663
Sedaghat, R., & Javanbakht, J. (2014). Neurohistopathological findings of the effects of amprolium on the brain and spinal cord changes in the a animal model : An experimental study. American Journal of Internal Medicine, 2(4), 67–71. https://doi.org/10.11648/j.ajim.20140204.13
Seker, U., Nergiz, Y., Aktas, A., Akkus, M., Ozmen, M. F., Uyar, E., & Soker, S. (2020). Trolox is more successful than allopurinol to reduce degenerative effects of testicular ischemia/reperfusion injury in rats. Journal of Pediatric Urology, 16(4), 465.e1-465.e8. https://doi.org/10.1016/j.jpurol.2020.05.008
Shimizu, S., Simon, R. P., & Graham, S. H. (1997). Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats. Neuroscience Letters, 239(2–3), 125–127. http://www.ncbi.nlm.nih.gov/pubmed/9469672
Shitsuka, C. D. W. M., Shitsuka, R., & Shitsuka, R. I. C. M. (2014). Matemática fundamental para tecnologia. Editora Érica.
Tanwar, R. K., Malik, K. S., & Gahlot, A. K. (1994). Polioencephalomalacia induced with amprolium in buffalo calves: clinicopathologic findings. Zentralblatt Fur Veterinarmedizin. Reihe A, 41(5), 396–404.
Tyczyńska, M., Gędek, M., Brachet, A., Stręk, W., Flieger, J., Teresiński, G., & Baj, J. (2024). Trace Elements in Alzheimer’s Disease and Dementia: The Current State of Knowledge. Journal of Clinical Medicine, 13(8), 2381. https://doi.org/10.3390/jcm13082381
Tylicki, A., Łotowski, Z., Siemieniuk, M., & Ratkiewicz, A. (2018). Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Bioscience Reports, 38(1), BSR20171148. https://doi.org/10.1042/BSR20171148
Vemuganti, R., Kalluri, H., Yi, J.-H., Bowen, K. K., & Hazell, A. S. (2006). Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism and structural damage in thiamine deficiency. European Journal of Neuroscience, 23(5), 1172–1188. https://doi.org/10.1111/j.1460-9568.2006.04651.x
Vetreno, R. P., Ramos, R. L., Anzalone, S., & Savage, L. M. (2012). Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff Syndrome. Brain Research, 1436, 178–192. https://doi.org/10.1016/j.brainres.2011.11.038
Vieira, S. (2021). Introdução à Bioestatística (6th ed.). GEN Guanabara Koogan. https://www.grupogen.com.br/introducao-a-bioestatistica-9788595157996
Wal, P., Wal, A., Vig, H., Mahmood, D., & Khan, M. M. U. (2024). Potential applications of mitochondrial therapy with a focus on Parkinson’s disease and mitochondrial transplantation. Advanced Pharmaceutical Bulletin, 14(1), 147–160. https://doi.org/10.34172/apb.2024.019
Wang, J.-Y., Wen, L.-L., Huang, Y.-N., Chen, Y.-T., & Ku, M.-C. (2006). Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Current Pharmaceutical Design, 12(27), 3521–3533. http://www.ncbi.nlm.nih.gov/pubmed/17017945
Wang, W., Le, A. A., Hou, B., Lauterborn, J. C., Cox, C. D., Levin, E. R., Lynch, G., & Gall, C. M. (2018). Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. The Journal of Neuroscience, 38(37), 7935–7951. https://doi.org/10.1523/JNEUROSCI.0801-18.2018
Wang, X., Wang, B., Fan, Z., Shi, X., Ke, Z.-J., & Luo, J. (2007). Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience, 144(3), 1045–1056. https://doi.org/10.1016/j.neuroscience.2006.10.008
Wongmekiat, O., Thamprasert, K., & Lumlertgul, D. (2007). Renoprotective effect of Trolox against ischaemia-reperfusion injury in rats. Clinical and Experimental Pharmacology and Physiology, 34(8), 753–759. https://doi.org/10.1111/j.1440-1681.2007.04651.x
Wu, T.-W., Hashimoto, N., Au, J.-X., Wu, J., Mickle, D. A. G., & Carey, D. (1991). Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury. Hepatology, 13(3), 575–580. https://doi.org/10.1002/hep.1840130328
Wu, T.-W., Hashimoto, N., Wu, J., Carey, D., Li, R.-K., Mickle, D. A. G., & Weisel, R. D. (1990). The cytoprotective effect of Trolox demonstrated with three types of human cells. Biochemistry and Cell Biology, 68(10), 1189–1194. https://doi.org/10.1139/o90-176
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Mirian Pereira da Silva; Francisco Wanderson Bizerra Lima; Adha Gabriela Santos Moura; Julia Paiva Nunes; Clarissa Amorim Silva de Cordova; Fabiano Mendes de Cordova

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
