Current therapeutics and future perspectives of immunotherapy through Chimerics Antigens Receptors (CARs) in T cells in the treatment of Human Immunodeficiency Virus (HIV) infection: A systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v14i6.49137

Keywords:

Adoptive Cellular Immunotherapy, CAR T-cell Therapy, Chimeric Antigen Receptor Therapy, Human Immunodeficiency Virus, HIV.

Abstract

Antiretroviral Therapy (ART) controls HIV but does not eradicate the virus, requiring lifelong treatment. CAR-T (Chimeric Antigen Receptor) immunotherapy emerges as a promising therapeutic approach. The objective was to analyze the current evidence, limitations, and future perspectives of CAR-T immunotherapy for HIV. This is a systematic review following the PRISMA2020 guidelines and the SWIM protocol; the search was conducted in the PubMed, Embase, Scopus, and Web of Science databases, with complementary searches on the ScienceDirect, Nature, and ClinicalTrials platforms, for the period of 2020 to 2025. After applying inclusion and exclusion criteria, 25 articles were selected. Significant advances in the design of CAR-T cells for HIV, such as DuoCAR-T and those based on broadly neutralizing antibodies (bNAbs), have increased in vivo efficacy and have countered viral escape. The protection of CAR-T cells with C34-CXCR4 and CCR5 inhibitors proved crucial in persistence and antiviral effect. The use of Rapamycin to reverse cellular exhaustion and the Nef protein to mitigate allogeneic immune rejection were also investigated. Despite success in reducing the viral reservoir, challenges remain, including the diversity of the viral envelope, access to anatomical sanctuaries, and treatment safety. The future of the therapy, which has great potential, focuses on combining multispecific CARs with Latency-Reversing Agents (LRAs) to improve persistence, targeting, and safety. However, more robust clinical trials are needed to validate its application and expand its efficacy.

References

Anthony-Gonda, K., Ray, A., Su, H., Wang, Y., Xiong, Y., Lee, D., Block, A., Chilunda, V., Weiselberg, J., Zemelko, L., Wang, Y. Y., Kleinsorge-Block, S., Reese, J. S., de Lima, M., Ochsenbauer, C., Kappes, J. C., Dimitrov, D. S., Orentas, R., Deeks, S. G., Dropulić, B. (2022). In vivo killing of primary HIV-infected cells by peripheral-injected early memory-enriched anti-HIV duoCAR T cells. JCI Insight, 7(21). https://doi.org/10.1172/jci.insight.161698

Armani-Tourret, M., Bone, B., Tan, T. S., Sun, W., Bellefroid, M., Struyve, T., Louella, M., Yu, X. G., & Lichterfeld, M. (2024). Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nature Reviews. Microbiology, 22(6), 328–344. https://doi.org/10.1038/s41579-024-01010-8

Asmamaw Dejenie, T., Tiruneh G/Medhin, M., Dessie Terefe, G., Tadele Admasu, F., Wale Tesega, W., & Chekol Abebe, E. (2022). Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccines & Immunotherapeutics, 18(6), 2114254. https://doi.org/10.1080/21645515.2022.2114254

Borrajo, A. (2025). Breaking barriers to an HIV-1 cure: Innovations in gene editing, immune modulation, and reservoir eradication. Life (Basel, Switzerland), 15(2), 276. https://doi.org/10.3390/life15020276

Bui, J. K., Starke, C. E., Poole, N. H., Rust, B. J., Jerome, K. R., Kiem, H.-P., & Peterson, C. W. (2024). CD20 CAR T cells safely and reversibly ablate B cell follicles in a non-human primate model of HIV persistence. Molecular Therapy: The Journal of the American Society of Gene Therapy, 32(5), 1238–1251. https://doi.org/10.1016/j.ymthe.2024.02.030

Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ (Clinical Research Ed.), 368, l6890. https://doi.org/10.1136/bmj.l6890

Campos-Gonzalez, G., Martinez-Picado, J., Velasco-Hernandez, T., & Salgado, M. (2023). Opportunities for CAR-T cell immunotherapy in HIV cure. Viruses, 15(3), 789. https://doi.org/10.3390/v15030789

Chen, T., Deng, J., Zhang, Y., Liu, B., Liu, R., Zhu, Y., Zhou, M., Lin, Y., Xia, B., Lin, K., Ma, X., & Zhang, H. (2024). The construction of modular universal chimeric antigen receptor T (MU-CAR-T) cells by covalent linkage of allogeneic T cells and various antibody fragments. Molecular Cancer, 23(1), 53. https://doi.org/10.1186/s12943-024-01938-8

Chhabra, L., Pandey, R. K., Kumar, R., Sundar, S., & Mehrotra, S. (2025). Navigating the roadblocks: Progress and challenges in cell-based therapies for human immunodeficiency virus. Journal of Cellular Biochemistry, 126(1), e30669. https://doi.org/10.1002/jcb.30669

Eichholz, K., Fukazawa, Y., Peterson, C. W., Haeseleer, F., Medina, M., Hoffmeister, S., Duell, D. M., Varco-Merth, B. D., Dross, S., Park, H., Labriola, C. S., Axthelm, M. K., Murnane, R. D., Smedley, J. V., Jin, L., Gong, J., Rust, B. J., Fuller, D. H., Kiem, H.-P., … Corey, L. (2024). Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. The Journal of Clinical Investigation, 134(7). https://doi.org/10.1172/JCI169309

Google. (2025). Gemini 2.5 Pro (Versão de 13 e 14 de junho de 2025) [Software de geração de imagem]. https://gemini.google.com/app

Hattenhauer, S. T., Mispelbaum, R., Hentrich, M., Boesecke, C., & Monin, M. B. (2023). Enabling CAR T-cell therapies for HIV-positive lymphoma patients - A call for action. HIV Medicine, 24(9), 957–964. https://doi.org/10.1111/hiv.13514

Hosseini, M.-S., Jahanshahlou, F., Akbarzadeh, M. A., Zarei, M., & Vaez-Gharamaleki, Y. (2024). Formulating research questions for evidence-based studies. Journal of Medicine, Surgery, and Public Health, 2(100046), 100046. https://doi.org/10.1016/j.glmedi.2023.100046

Li, S., Wang, H., Guo, N., Su, B., Lambotte, O., & Zhang, T. (2023). Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chinese Medical Journal, 136(22), 2658–2667. https://doi.org/10.1097/CM9.0000000000002904

Liu, B., Zhang, W., Xia, B., Jing, S., Du, Y., Zou, F., Li, R., Lu, L., Chen, S., Li, Y., Hu, Q., Lin, Y., Zhang, Y., He, Z., Zhang, X., Chen, X., Peng, T., Tang, X., Cai, W., … Zhang, H. (2021). Broadly neutralizing antibody-derived CAR T cells reduce viral reservoir in individuals infected with HIV-1. The Journal of Clinical Investigation, 131(19). https://doi.org/10.1172/JCI150211

Maldini, C. R., Claiborne, D. T., Okawa, K., Chen, T., Dopkin, D. L., Shan, X., Power, K. A., Trifonova, R. T., Krupp, K., Phelps, M., Vrbanac, V. D., Tanno, S., Bateson, T., Leslie, G. J., Hoxie, J. A., Boutwell, C. L., Riley, J. L., & Allen, T. M. (2020). Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nature Medicine, 26(11), 1776–1787. https://doi.org/10.1038/s41591-020-1039-5

Mao, Y., Liao, Q., Zhu, Y., Bi, M., Zou, J., Zheng, N., Zhu, L., Zhao, C., Liu, Q., Liu, L., Chen, J., Gu, L., Liu, Z., Pan, X., Xue, Y., Feng, M., Ying, T., Zhou, P., Wu, Z., … Xu, J. (2024). Efficacy and safety of novel multifunctional M10 CAR-T cells in HIV-1-infected patients: a phase I, multicenter, single-arm, open-label study. Cell Discovery, 10(1), 49. https://doi.org/10.1038/s41421-024-00658-z

Matsui, Y., & Miura, Y. (2023). Advancements in cell-based therapies for HIV cure. Cells (Basel, Switzerland), 13(1). https://doi.org/10.3390/cells13010064

Meng, L., Zhao, H., Chang, S., Li, W., Tian, Y., Wang, R., Wang, L., Gu, T., Wu, J., Yu, B., Wang, C., & Yu, X. (2025). Engineering of CD8+ T cells with an HIV-specific synthetic notch receptor to secrete broadly therapeutic antibodies for combining antiviral humoral and cellular immune responses. mBio, 16(4), e0383924. https://doi.org/10.1128/mbio.03839-24

Mu, W., Tomer, S., Harding, J., Kedia, N., Rezek, V., Cook, E., Patankar, V., Carrillo, M. A., Martin, H., Ng, H., Wang, L., Marsden, M. D., Kitchen, S. G., & Zhen, A. (2025). Rapamycin enhances CAR-T control of HIV replication and reservoir elimination in vivo. The Journal of Clinical Investigation, 135(7). https://doi.org/10.1172/JCI185489

Nardo, D., Maddox, E. G., & Riley, J. L. (2025). Cell therapies for viral diseases: a new frontier. Seminars in Immunopathology, 47(1), 5. https://doi.org/10.1007/s00281-024-01031-8

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM.

Perica, K., Kotchetkov, I. S., Mansilla-Soto, J., Ehrich, F., Herrera, K., Shi, Y., Dobrin, A., Gönen, M., & Sadelain, M. (2025). HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature, 640(8059), 793–801. https://doi.org/10.1038/s41586-025-08657-0

Qi, J., Ding, C., Jiang, X., & Gao, Y. (2020). Advances in developing CAR T-cell therapy for HIV cure. Frontiers in Immunology, 11, 361. https://doi.org/10.3389/fimmu.2020.00361

Rothemejer, F. H., Lauritsen, N. P., Søgaard, O. S., & Tolstrup, M. (2023). Strategies for enhancing CAR T cell expansion and persistence in HIV infection. Frontiers in Immunology, 14, 1253395. https://doi.org/10.3389/fimmu.2023.1253395

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Su, H., Mueller, A., & Goldstein, H. (2024). Recent advances on anti-HIV chimeric antigen receptor-T-cell treatment to provide sustained HIV remission. Current Opinion in HIV and AIDS, 19(4), 169–178. https://doi.org/10.1097/COH.0000000000000858

Wu, C., Johnson, N. M., Yu, S., Lo, A. S., Sahu, G. K., Marx, P. A., von Laer, D., Skowron, G., Geleziunas, R., Shaw, G. M., Kaur, A., Junghans, R. P., & Braun, S. E. (2025). Persistence of CMV-specific anti-HIV CAR T cells after adoptive immunotherapy. Journal of Virology, 99(5), e0193324. https://doi.org/10.1128/jvi.01933-24

Xiao, Q., He, S., Wang, C., Zhou, Y., Zeng, C., Liu, J., Liu, T., Li, T., Quan, X., Wang, L., Zhai, L., Liu, Y., Li, J., Zhang, X., & Liu, Y. (2025). Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead? Biomolecules, 15(3), 378. https://doi.org/10.3390/biom15030378

Zenere, G., Wu, C., Midkiff, C. C., Johnson, N. M., Grice, C. P., Wimley, W. C., Kaur, A., & Braun, S. E. (2024). Extracellular domain, hinge, and transmembrane determinants affecting surface CD4 expression of a novel anti-HIV chimeric antigen receptor (CAR) construct. PloS One, 19(8), e0293990. https://doi.org/10.1371/journal.pone.0293990

Published

2025-06-28

Issue

Section

Health Sciences

How to Cite

Current therapeutics and future perspectives of immunotherapy through Chimerics Antigens Receptors (CARs) in T cells in the treatment of Human Immunodeficiency Virus (HIV) infection: A systematic review. Research, Society and Development, [S. l.], v. 14, n. 6, p. e10814649137, 2025. DOI: 10.33448/rsd-v14i6.49137. Disponível em: https://rsdjournal.org/rsd/article/view/49137. Acesso em: 5 dec. 2025.