Terapéutica actual y perspectivas futuras de la inmunoterapia mediante Receptores de Antígenos Quiméricos (CARs) en células T en el tratamiento de la infección por el Virus de la Inmunodeficiencia Humana (VIH): Una revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v14i6.49137Palabras clave:
Inmunoterapia Celular Adoptiva, Terapia CAR con Células T, Terapia con Receptores de Antígenos Quiméricos, Virus de la Inmunodeficiencia Humana, VIH.Resumen
La Terapia Antirretroviral (TARV) controla el VIH, pero no erradica el virus, lo que requiere un tratamiento de por vida. La inmunoterapia CAR-T (Receptores de Antígenos Quiméricos) surge como un enfoque terapéutico prometedor. El objetivo fue analizar las evidencias actuales, limitaciones y perspectivas futuras de la inmunoterapia CAR-T para el VIH. Se trata de una revisión sistemática que sigue las directrices PRISMA2020 y el protocolo SWIM; la búsqueda se realizó en las bases de datos PubMed, Embase, Scopus y Web of Science, añadiendo búsquedas complementarias en las plataformas ScienceDirect, Nature y ClinicalTrials, entre 2020 y 2025. Tras aplicar criterios de inclusión y exclusión, se seleccionaron 25 artículos. Avances significativos en el diseño de las células CAR-T para el VIH, como las DuoCAR-T y las basadas en Anticuerpos Ampliamente Neutralizantes (bNAbs), aumentaron la eficacia in vivo y el combate al escape viral. La protección de las células CAR-T con inhibidores como C34-CXCR4 y CCR5 resultó crucial para la persistencia y el efecto antiviral. También se investigó el uso de la Rapamicina para revertir el agotamiento celular y de la proteína Nef con el objetivo de mitigar el rechazo inmunológico alogénico. A pesar del éxito en la reducción del reservorio viral, la diversidad de la envoltura viral, el acceso a los santuarios anatómicos y la seguridad del tratamiento siguen siendo desafíos. El futuro de la terapia, que tiene un gran potencial, se centra en la combinación de CARs multiespecíficos con Agentes Reversores de Latencia (LRAs) para mejorar la persistencia, la orientación y la seguridad. Sin embargo, se necesitan ensayos clínicos más robustos para validar su aplicación y ampliar su eficacia.
Referencias
Anthony-Gonda, K., Ray, A., Su, H., Wang, Y., Xiong, Y., Lee, D., Block, A., Chilunda, V., Weiselberg, J., Zemelko, L., Wang, Y. Y., Kleinsorge-Block, S., Reese, J. S., de Lima, M., Ochsenbauer, C., Kappes, J. C., Dimitrov, D. S., Orentas, R., Deeks, S. G., Dropulić, B. (2022). In vivo killing of primary HIV-infected cells by peripheral-injected early memory-enriched anti-HIV duoCAR T cells. JCI Insight, 7(21). https://doi.org/10.1172/jci.insight.161698
Armani-Tourret, M., Bone, B., Tan, T. S., Sun, W., Bellefroid, M., Struyve, T., Louella, M., Yu, X. G., & Lichterfeld, M. (2024). Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nature Reviews. Microbiology, 22(6), 328–344. https://doi.org/10.1038/s41579-024-01010-8
Asmamaw Dejenie, T., Tiruneh G/Medhin, M., Dessie Terefe, G., Tadele Admasu, F., Wale Tesega, W., & Chekol Abebe, E. (2022). Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccines & Immunotherapeutics, 18(6), 2114254. https://doi.org/10.1080/21645515.2022.2114254
Borrajo, A. (2025). Breaking barriers to an HIV-1 cure: Innovations in gene editing, immune modulation, and reservoir eradication. Life (Basel, Switzerland), 15(2), 276. https://doi.org/10.3390/life15020276
Bui, J. K., Starke, C. E., Poole, N. H., Rust, B. J., Jerome, K. R., Kiem, H.-P., & Peterson, C. W. (2024). CD20 CAR T cells safely and reversibly ablate B cell follicles in a non-human primate model of HIV persistence. Molecular Therapy: The Journal of the American Society of Gene Therapy, 32(5), 1238–1251. https://doi.org/10.1016/j.ymthe.2024.02.030
Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ (Clinical Research Ed.), 368, l6890. https://doi.org/10.1136/bmj.l6890
Campos-Gonzalez, G., Martinez-Picado, J., Velasco-Hernandez, T., & Salgado, M. (2023). Opportunities for CAR-T cell immunotherapy in HIV cure. Viruses, 15(3), 789. https://doi.org/10.3390/v15030789
Chen, T., Deng, J., Zhang, Y., Liu, B., Liu, R., Zhu, Y., Zhou, M., Lin, Y., Xia, B., Lin, K., Ma, X., & Zhang, H. (2024). The construction of modular universal chimeric antigen receptor T (MU-CAR-T) cells by covalent linkage of allogeneic T cells and various antibody fragments. Molecular Cancer, 23(1), 53. https://doi.org/10.1186/s12943-024-01938-8
Chhabra, L., Pandey, R. K., Kumar, R., Sundar, S., & Mehrotra, S. (2025). Navigating the roadblocks: Progress and challenges in cell-based therapies for human immunodeficiency virus. Journal of Cellular Biochemistry, 126(1), e30669. https://doi.org/10.1002/jcb.30669
Eichholz, K., Fukazawa, Y., Peterson, C. W., Haeseleer, F., Medina, M., Hoffmeister, S., Duell, D. M., Varco-Merth, B. D., Dross, S., Park, H., Labriola, C. S., Axthelm, M. K., Murnane, R. D., Smedley, J. V., Jin, L., Gong, J., Rust, B. J., Fuller, D. H., Kiem, H.-P., … Corey, L. (2024). Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. The Journal of Clinical Investigation, 134(7). https://doi.org/10.1172/JCI169309
Google. (2025). Gemini 2.5 Pro (Versão de 13 e 14 de junho de 2025) [Software de geração de imagem]. https://gemini.google.com/app
Hattenhauer, S. T., Mispelbaum, R., Hentrich, M., Boesecke, C., & Monin, M. B. (2023). Enabling CAR T-cell therapies for HIV-positive lymphoma patients - A call for action. HIV Medicine, 24(9), 957–964. https://doi.org/10.1111/hiv.13514
Hosseini, M.-S., Jahanshahlou, F., Akbarzadeh, M. A., Zarei, M., & Vaez-Gharamaleki, Y. (2024). Formulating research questions for evidence-based studies. Journal of Medicine, Surgery, and Public Health, 2(100046), 100046. https://doi.org/10.1016/j.glmedi.2023.100046
Li, S., Wang, H., Guo, N., Su, B., Lambotte, O., & Zhang, T. (2023). Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chinese Medical Journal, 136(22), 2658–2667. https://doi.org/10.1097/CM9.0000000000002904
Liu, B., Zhang, W., Xia, B., Jing, S., Du, Y., Zou, F., Li, R., Lu, L., Chen, S., Li, Y., Hu, Q., Lin, Y., Zhang, Y., He, Z., Zhang, X., Chen, X., Peng, T., Tang, X., Cai, W., … Zhang, H. (2021). Broadly neutralizing antibody-derived CAR T cells reduce viral reservoir in individuals infected with HIV-1. The Journal of Clinical Investigation, 131(19). https://doi.org/10.1172/JCI150211
Maldini, C. R., Claiborne, D. T., Okawa, K., Chen, T., Dopkin, D. L., Shan, X., Power, K. A., Trifonova, R. T., Krupp, K., Phelps, M., Vrbanac, V. D., Tanno, S., Bateson, T., Leslie, G. J., Hoxie, J. A., Boutwell, C. L., Riley, J. L., & Allen, T. M. (2020). Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nature Medicine, 26(11), 1776–1787. https://doi.org/10.1038/s41591-020-1039-5
Mao, Y., Liao, Q., Zhu, Y., Bi, M., Zou, J., Zheng, N., Zhu, L., Zhao, C., Liu, Q., Liu, L., Chen, J., Gu, L., Liu, Z., Pan, X., Xue, Y., Feng, M., Ying, T., Zhou, P., Wu, Z., … Xu, J. (2024). Efficacy and safety of novel multifunctional M10 CAR-T cells in HIV-1-infected patients: a phase I, multicenter, single-arm, open-label study. Cell Discovery, 10(1), 49. https://doi.org/10.1038/s41421-024-00658-z
Matsui, Y., & Miura, Y. (2023). Advancements in cell-based therapies for HIV cure. Cells (Basel, Switzerland), 13(1). https://doi.org/10.3390/cells13010064
Meng, L., Zhao, H., Chang, S., Li, W., Tian, Y., Wang, R., Wang, L., Gu, T., Wu, J., Yu, B., Wang, C., & Yu, X. (2025). Engineering of CD8+ T cells with an HIV-specific synthetic notch receptor to secrete broadly therapeutic antibodies for combining antiviral humoral and cellular immune responses. mBio, 16(4), e0383924. https://doi.org/10.1128/mbio.03839-24
Mu, W., Tomer, S., Harding, J., Kedia, N., Rezek, V., Cook, E., Patankar, V., Carrillo, M. A., Martin, H., Ng, H., Wang, L., Marsden, M. D., Kitchen, S. G., & Zhen, A. (2025). Rapamycin enhances CAR-T control of HIV replication and reservoir elimination in vivo. The Journal of Clinical Investigation, 135(7). https://doi.org/10.1172/JCI185489
Nardo, D., Maddox, E. G., & Riley, J. L. (2025). Cell therapies for viral diseases: a new frontier. Seminars in Immunopathology, 47(1), 5. https://doi.org/10.1007/s00281-024-01031-8
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM.
Perica, K., Kotchetkov, I. S., Mansilla-Soto, J., Ehrich, F., Herrera, K., Shi, Y., Dobrin, A., Gönen, M., & Sadelain, M. (2025). HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature, 640(8059), 793–801. https://doi.org/10.1038/s41586-025-08657-0
Qi, J., Ding, C., Jiang, X., & Gao, Y. (2020). Advances in developing CAR T-cell therapy for HIV cure. Frontiers in Immunology, 11, 361. https://doi.org/10.3389/fimmu.2020.00361
Rothemejer, F. H., Lauritsen, N. P., Søgaard, O. S., & Tolstrup, M. (2023). Strategies for enhancing CAR T cell expansion and persistence in HIV infection. Frontiers in Immunology, 14, 1253395. https://doi.org/10.3389/fimmu.2023.1253395
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Su, H., Mueller, A., & Goldstein, H. (2024). Recent advances on anti-HIV chimeric antigen receptor-T-cell treatment to provide sustained HIV remission. Current Opinion in HIV and AIDS, 19(4), 169–178. https://doi.org/10.1097/COH.0000000000000858
Wu, C., Johnson, N. M., Yu, S., Lo, A. S., Sahu, G. K., Marx, P. A., von Laer, D., Skowron, G., Geleziunas, R., Shaw, G. M., Kaur, A., Junghans, R. P., & Braun, S. E. (2025). Persistence of CMV-specific anti-HIV CAR T cells after adoptive immunotherapy. Journal of Virology, 99(5), e0193324. https://doi.org/10.1128/jvi.01933-24
Xiao, Q., He, S., Wang, C., Zhou, Y., Zeng, C., Liu, J., Liu, T., Li, T., Quan, X., Wang, L., Zhai, L., Liu, Y., Li, J., Zhang, X., & Liu, Y. (2025). Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead? Biomolecules, 15(3), 378. https://doi.org/10.3390/biom15030378
Zenere, G., Wu, C., Midkiff, C. C., Johnson, N. M., Grice, C. P., Wimley, W. C., Kaur, A., & Braun, S. E. (2024). Extracellular domain, hinge, and transmembrane determinants affecting surface CD4 expression of a novel anti-HIV chimeric antigen receptor (CAR) construct. PloS One, 19(8), e0293990. https://doi.org/10.1371/journal.pone.0293990
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Leandro Maia Leão; Josemir de Almeida Lima; Karina Brandão Menezes Lima; Roberta Lima; Geórgia Maria Ricardo Félix dos Santos; Milton Vieira Costa; Waléria Dantas Pereira Gusmão; Amanda Cavalcante de Macêdo; Kleytonn Giann Silva de Santana; Katharina Jucá de Moraes Fernandes; Luciana da Silva Viana

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
