Functional properties of stingless bee honey and pollen: A review of their neuroprotective, antioxidant, and anti-inflammatory effects

Authors

DOI:

https://doi.org/10.33448/rsd-v14i7.49202

Keywords:

Neurodegenerative disease, Free radicals, Meliponines, Prevention.

Abstract

Neurodegenerative diseases are the leading cause of dementia in the elderly, accounting for up to 70% of cases. With global population aging, the number of people affected by dementia is expected to triple by 2050. These diseases lead to episodic memory loss, progressing to cognitive and motor impairment, ultimately requiring intensive care. Oxidative stress, resulting from an imbalance between the production and elimination of free radicals, plays a key role in neurodegeneration. This study aims to review the literature on the antioxidant compounds present in stingless bee honey and pollen and their potential neuroprotective effects in neurodegenerative diseases. A literature review was conducted using databases such as Scielo, Google Scholar, and PubMed, prioritizing articles published in English and Portuguese. The reviewed studies suggest that the regular consumption of honey and pollen from stingless bees may provide long-term benefits for brain health, highlighting their potential role in the prevention of neurodegenerative conditions. It is therefore concluded that honey and pollen from stingless native bees emerge as promising natural sources of antioxidant compounds with neuroprotective potential, reinforcing the need for further research into their role in the prevention and delay of neurodegenerative disease progression.

References

Abreu, B. V. B. (2016). Bioprospecção de pólen de Melipona fasciculata SMITH [Tese de doutorado, Universidade Federal do Maranhão]. Universidade Federal do Maranhão.

Al-Hatamleh, M. A. I., Ahmad, S., Shukor, N. A., Khazim, N., Abdul-Rahman, N. S., Fathil, S. M., & Hasan, H. (2020). Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules, 10(6), 923. https://doi.org/10.3390/biom10060923

Anacleto, D. A., Marchini, L. C., Moreti, A. C. C. C., Otsuk, I. P., & Silva, R. A. N. (2009). Composição de amostras de mel de abelha Jataí (Tetragonisca angustula Latreille, 1811). Ciência e Tecnologia de Alimentos, 29(3), 535–541. https://doi.org/10.1590/S0101-20612009000300008

Ávila, S., Miguel, M. G., Oliveira, R. C., Rosado, C., & Figueiredo, A. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science & Technology, 81, 37–50. https://doi.org/10.1016/j.tifs.2018.08.006

Azman, K. F., Zakaria, R., Abd Aziz, C. B., & Othman, Z. (2016). Tualang honey attenuates noise stress‐induced memory deficits in aged rats. Oxidative Medicine and Cellular Longevity, 2016(1), 1549158. https://doi.org/10.1155/2016/1549158

Barichello, T., Martins, M. R., Reinke, A., Feier, G., Ritter, C., Quevedo, J., & Dal-Pizzol, F. (2006). Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Critical Care Medicine, 34, 886–889. https://doi.org/10.1097/01.CCM.0000206109.25118.5C

Bezerra, M. L. R., Pereira, S. M. S., da Silva, R. P., Feitosa, C. M., & Almeida, R. N. (2023). Malicia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) improves depressive-like behaviour, somatic, biochemical and inflammatory parameters of obese rats. Food Research International, 164, 112391. https://doi.org/10.1016/j.foodres.2023.112391

Bezerra, M. L. R., Pereira, S. M. S., da Silva, R. P., Feitosa, C. M., & Almeida, R. N. (2025). Malícia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) shows antioxidant activity via phenolic compound action in obese rats. Frontiers in Nutrition, 12, 1524642. https://doi.org/10.3389/fnut.2025.1524642

Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2017). Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 63, 89–97. https://doi.org/10.1016/j.jfca.2017.07.003

Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International, 129, 108756. https://doi.org/10.1016/j.foodres.2019.108756

Bradford, R., Amaral, T. F., & Cesar, R. (2016). Frutos gordos neurodegenerescência. Acta Portuguesa de Nutrição, 6, 38–41.

Casarin, S. T., Sehnem, G. D., Neutzling, A. S., & Rosa, L. M. (2020). Tipos de revisão de literatura: Considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924

Cheng, M. Z. S. Z., Ahmad, S., Khalid, K., Ismail, N., Latif, M. A., & Al-Hatamleh, M. A. I. (2023). Stingless bee (Heterotrigona itama) honey and its phenolic-rich extract ameliorate oxidant-antioxidant balance via KEAP1-NRF2 signalling pathway. Nutrients, 15(13), 2835. https://doi.org/10.3390/nu15132835

Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., Zhang, J., & Giampieri, F. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322

Cisilotto, J., Spanevello, R. A., Mello, J. R. B., Fachinetto, R., & Felipe, K. B. (2018). Cytotoxicity mechanisms in melanoma cells and UPLC-QTOF/MS² chemical characterization of two Brazilian stingless bee propolis: Uncommon presence of piperidinic alkaloids. Journal of Pharmaceutical and Biomedical Analysis, 149, 502–511. https://doi.org/10.1016/j.jpba.2017.11.070

De Oliveira, R. G., dos Santos, F. M., Lima, M. A. M., Ferreira, S. L. C., & dos Santos, W. N. L. (2017). Screening for quality indicators and phenolic compounds of biotechnological interest in honey samples from six species of stingless bees (Hymenoptera: Apidae). Food Science and Technology, 37(4), 552–557. https://doi.org/10.1590/1678-457x.24016

Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: A review. Journal of the Science of Food and Agriculture, 96(13), 4303–4309. https://doi.org/10.1002/jsfa.7752

Duan, H., Liu, G., Hu, Y., Chen, J., Liu, Y., Wang, H., & Li, J. (2019). Quality evaluation of bee pollens by chromatographic fingerprint and simultaneous determination of its major bioactive components. Food and Chemical Toxicology, 134, 110831. https://doi.org/10.1016/j.fct.2019.110831

Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2012). Honey: A novel antioxidant. Molecules, 17(4), 4400–4423. https://doi.org/10.3390/molecules17044400

Gauthier, S., Rosa-Neto, P., Morais, J. A., & Cummings, J. (2021). World Alzheimer Report 2021: Journey through the diagnosis of dementia (313 p.). Alzheimer’s Disease International. https://www.alzint.org

Gil, A. C. (2017). Como elaborar projetos de pesquisa (6ª ed.). Atlas.

Godarzi, S. M., Aghazadeh, S., & Rashidi, M. (2020). Antioxidant effect of p-coumaric acid on interleukin-1β and tumor necrosis factor-α in rats with renal ischemia reperfusion. Nefrologia (English Edition), 40(3), 311–319. https://doi.org/10.1016/j.nefroe.2019.07.007

Guan, G., & Lan, S. (2018). Implications of antioxidant systems in inflammatory bowel disease. BioMed Research International, 2018, 1–15. https://doi.org/10.1155/2018/1290178

Guerrini, A., Sacchetti, G., Rossi, D., Paganetto, G., Grandini, A., Muzzoli, M., & Tognolini, M. (2009). Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry, 114(4), 1413–1420. https://doi.org/10.1016/j.foodchem.2008.11.041

Hampel, H., Toschi, N., Babiloni, C., Baldacci, F., Black, K. L., Bokde, A. L., ... & Vergallo, A. (2018). Revolution of Alzheimer precision neurology: Passageway of systems biology and neurophysiology. Journal of Alzheimer’s Disease, 64(1), 47–105. https://doi.org/10.3233/JAD-179935

He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry, 44(2), 532–553. https://doi.org/10.1159/000485089

Hochheim, S., Cardoso, M. V., Machado, A. M. R., & Moura, S. (2019). Determination of phenolic profile by HPLC–ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. Revista Brasileira de Farmacognosia, 29, 339–350. https://doi.org/10.1016/j.bjp.2018.12.002

Jayashree, V., Priyanka, N., Pradeep, P., & Divya, S. (2016). In vitro anti-inflammatory activity of 4-benzylpiperidine. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 108–110.

Kalantari, N., Ghaffari, S., Bayani, M., Shahrokhi, N., & Khakzad, M. R. (2016). Effect of honey on mRNA expression of TNF-α, IL-1β and IL-6 following acute toxoplasmosis in mice. Cytokine, 88, 85–90. https://doi.org/10.1016/j.cyto.2016.08.006

Kumar, S., & Pandey, A. K. (2015). Free radicals: Health implications and their mitigation by herbals. Journal of Advances in Medicine and Medical Research, 7(6), 438–457. https://doi.org/10.9734/BJMMR/2015/15328

Kwon, J. Y., Kim, H. J., Park, S. J., & Lee, Y. M. (2019). Perspective: Therapeutic potential of flavonoids as alternative medicines in epilepsy. Advances in Nutrition, 10, 778–790. https://doi.org/10.1093/advances/nmz047

Lee, J. H. (2019). Intracellular antioxidant activity and inhibition of bee pollens on the production of inflammatory mediators (P06-081-19). Current Developments in Nutrition, 3(Suppl. 1), 596. https://doi.org/10.1093/cdn/nzz029.P06-081-19

Lindqvist, D., Dhabhar, F. S., Mellon, S. H., Yehuda, R., & Flory, J. D. (2017). Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology, 76, 197–205. https://doi.org/10.1016/j.psyneuen.2016.11.034

Lins, A. C. S., Silva, M. S., Maia, G. A., & Silva, I. M. A. (2003). Flavonóides isolados do pólen coletado pela abelha Scaptotrigona bipunctata (canudo). Revista Brasileira de Farmacognosia, 13(2), 40–41. https://doi.org/10.1590/S0102-695X2003000200005

Lopes, A. J. O., Silva, E. L. C., Andrade, L. N., & Barreto, A. S. (2019). Anti-inflammatory and antinociceptive activity of pollen extract collected by stingless bee Melipona fasciculata. International Journal of Molecular Sciences, 20(18), 4512. https://doi.org/10.3390/ijms20184512

Lopes, A. J. O., Silva, E. L. C., Andrade, L. N., & Barreto, A. S. (2020). Anti-inflammatory and antioxidant activity of pollen extract collected by Scaptotrigona affinis postica: In silico, in vitro, and in vivo studies. Antioxidants, 9(2), 103. https://doi.org/10.3390/antiox9020103

Maruyama, H., Sakamoto, T., Araki, Y., Hara, H., & Ichikawa, K. (2010). Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complementary and Alternative Medicine, 10, 30. https://doi.org/10.1186/1472-6882-10-30

Abdul Kadar, N. N. M., Zakaria, R., Othman, Z., & Zulkifli, N. A. (2022). Comparable benefits of stingless bee honey and caffeic acid in mitigating the negative effects of metabolic syndrome on the brain. Antioxidants, 11(11), 2154. https://doi.org/10.3390/antiox11112154

Mustafa, M. Z., Omar, M. H., & Yaacob, N. S. (2019). Stingless bee honey improves spatial memory in mice, probably associated with brain‐derived neurotrophic factor (BDNF) and inositol 1,4,5‐triphosphate receptor type 1 (Itpr1) genes. Evidence-Based Complementary and Alternative Medicine, 2019, 8258307. https://doi.org/10.1155/2019/8258307

Nweze, J. A., Okafor, J. I., & Nweze, E. I. (2017). Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Research Notes, 10(566), 1–6. https://doi.org/10.1186/s13104-017-2893-3

Oliveira, E. N. A., & Santos, D. C. (2011). Análise físico-química de méis de abelhas africanizada e nativa. Revista do Instituto Adolfo Lutz, 70(2), 132–138.

Oliveira, P. S., Silva, I. G., Lima, Y. H., & Silva, J. C. (2012). Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) e Apis mellifera (Apidae, Apini) da Amazônia. Química Nova, 35(9), 1728–1732.

https://doi.org/10.1590/S01000422012000900014

Othman, Z. A., Zakaria, R., & Hussain, N. H. (2020). Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxidants, 9(33), 1–13. https://doi.org/10.3390/antiox9010033

Oyefuga, O., Oke, O. O., & Ekunwe, M. E. (2012). Honey consumption and its anti-ageing potency in white Wister albino rats. Scholarly Journal of Biological Science, 1(2), 15–19.

Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233–239. https://doi.org/10.1016/j.fct.2013.11.010

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (e-book gratuito). Universidade Federal de Santa Maria – UFSM. https://repositorio.ufsm.br/handle/1/15824

Perusso, E. (2022). Características químicas e compostos bioativos de pólen (saburá) de abelhas Scaptotrigona spp. [Dissertação de Mestrado, Universidade Estadual do Oeste do Paraná].

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Ranneh, Y., Ali, F., Zarei, M., Akim, A. M., Khaza’ai, H., Fadel, A., & Hamid, H. A. (2018). Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography–mass spectrometry. LWT – Food Science and Technology, 89, 1–9. https://doi.org/10.1016/j.lwt.2017.10.039

Ranneh, Y., Ali, F., Zarei, M., Khaza’ai, H., & Hamid, H. A. (2019). Stingless bee honey protects against lipopolysaccharide-induced chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutrition and Metabolism, 16(1), 1–17. https://doi.org/10.1186/s12986-019-0371-0

Rao, P. V., Krishnan, K. T., Salleh, N., & Gan, S. H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia, 26(5), 657–664. https://doi.org/10.1016/j.bjp.2016.01.012

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem, 20(2), v–vi. https://doi.org/10.1590/S0103-21002007000200001

Rodríguez-Malaver, A. J., Reyna-Bello, A., & Vit, P. (2009). Properties of honey from ten species of Peruvian stingless bees. Natural Product Communications, 4(9), 1221–1226.

Rouzer, C. A., & Marnett, L. J. (2009). Cyclooxygenases: Structural and functional insights. Journal of Lipid Research, 50(Suppl), S29–S34. https://doi.org/10.1194/jlr.R800042-JLR200

Ruiz-Ruiz, J. C. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424–1437. https://doi.org/10.1080/09540105.2017.1366884

Sattler, J. A. G., de Melo, I. L. P., Pastore, G. M., & de Almeida-Muradian, L. B. (2015). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International, 77, 82–91. https://doi.org/10.1016/j.foodres.2015.09.016

Silva, C. L., Queiroz, A. J. M., & Figueirêdo, R. M. F. (2004). Caracterização físico-química de méis produzidos no Estado do Piauí para diferentes floradas. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(2–3), 267–271. https://doi.org/10.1590/S1415-43662004000200015

Silva, G. R., Oliveira, T. S., & Almeida-Muradian, L. B. (2014). Identificação de açúcares, aminoácidos e minerais do pólen de abelhas sem ferrão Jandaíra (Melipona subnitida). Food and Nutrition Sciences, 5, 1015–1021. https://doi.org/10.4236/fns.2014.511110

Silva, T. M. S., dos Santos, F. P., Evangelista-Rodrigues, A., da Silva, E. M. S., da Silva, G. S., de Novais, J. S., Camara, C. A., & Silva, E. M. S. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis, 19, 507–511. https://doi.org/10.1016/j.jfca.2006.03.014

Vasconcelos, T. B., Duarte, F. G., Souza, M. L., & Santos, G. T. (2014). Radicais livres e antioxidantes: Proteção ou perigo? UNOPAR Científica: Ciências Biológicas e da Saúde, 16(3), 213–219.

Villas-Bôas, J. (2012). Manual tecnológico: Mel de abelhas sem ferrão (Série Manual Tecnológico). Instituto Sociedade, População e Natureza (ISPN).

Zakaria, F. H., Othman, Z., & Hassan, A. (2022). Pathophysiology of depression: Stingless bee honey promising as an antidepressant. Molecules, 27(16), 5091. https://doi.org/10.3390/molecules27165091

Zhou, J., Wan, Y., Wang, W., Liu, G., Li, Y., & Qu, H. (2015). Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control, 57, 54–61. https://doi.org/10.1016/j.foodcont.2015.03.018

Zulkifli, N. A., Abdul Kadar, N. N. M., Zakaria, R., & Othman, Z. (2023). The potential neuroprotective effects of stingless bee honey. Frontiers in Aging Neuroscience, 14, 1048028. https://doi.org/10.3389/fnagi.2022.1048028

Published

2025-07-09

Issue

Section

Agrarian and Biological Sciences

How to Cite

Functional properties of stingless bee honey and pollen: A review of their neuroprotective, antioxidant, and anti-inflammatory effects. Research, Society and Development, [S. l.], v. 14, n. 7, p. e2714749202, 2025. DOI: 10.33448/rsd-v14i7.49202. Disponível em: https://rsdjournal.org/rsd/article/view/49202. Acesso em: 5 dec. 2025.