Propriedades funcionais do mel e pólen de abelhas nativas sem ferrão: Uma revisão sobre seus efeitos neuroprotetores, antioxidantes e anti-inflamatórios

Autores

DOI:

https://doi.org/10.33448/rsd-v14i7.49202

Palavras-chave:

Doenças neurodegenerativas, Radicais livres, Meliponíneas, Prevenção.

Resumo

As doenças neurodegenerativas são as principais causa de demência em idosos, correspondendo até 70% dos casos. Com o envelhecimento global, o número de pessoas com demência, deve triplicar até 2050. Estas doenças provocam perdas de memória episódica, evoluindo para deterioração cognitiva e motora, resultando na necessidade de cuidados intensivos. O estresse oxidativo, causado pelo desequilíbrio na produção e eliminação de radicais livres, contribui para a neurodegeneração. Este estudo objetiva revisar a literatura sobre os compostos antioxidantes presentes no mel e pólen de abelhas nativas sem ferrão e seus potenciais efeitos neuroprotetores em doenças neurodegenerativas. Para isso a metodologia incluiu uma revisão da literatura em bases de dados como Scielo, Google Acadêmico e Pubmed, priorizando artigos em inglês e português. Artigos publicados evidenciaram que o consumo regular do mel e pólen das abelhas nativas sem ferrão pode trazer benefícios de longo prazo para a saúde cerebral, posicionando-os como agentes promissores na prevenção de condições neurodegenerativas. Conclui-se, portanto, que o mel e o pólen de abelhas nativas sem ferrão despontam como fontes naturais promissoras de compostos antioxidantes com potencial neuroprotetor, reforçando a necessidade de investigações aprofundadas sobre seu papel na prevenção e no retardo da progressão de doenças neurodegenerativas.

Referências

Abreu, B. V. B. (2016). Bioprospecção de pólen de Melipona fasciculata SMITH [Tese de doutorado, Universidade Federal do Maranhão]. Universidade Federal do Maranhão.

Al-Hatamleh, M. A. I., Ahmad, S., Shukor, N. A., Khazim, N., Abdul-Rahman, N. S., Fathil, S. M., & Hasan, H. (2020). Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules, 10(6), 923. https://doi.org/10.3390/biom10060923

Anacleto, D. A., Marchini, L. C., Moreti, A. C. C. C., Otsuk, I. P., & Silva, R. A. N. (2009). Composição de amostras de mel de abelha Jataí (Tetragonisca angustula Latreille, 1811). Ciência e Tecnologia de Alimentos, 29(3), 535–541. https://doi.org/10.1590/S0101-20612009000300008

Ávila, S., Miguel, M. G., Oliveira, R. C., Rosado, C., & Figueiredo, A. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science & Technology, 81, 37–50. https://doi.org/10.1016/j.tifs.2018.08.006

Azman, K. F., Zakaria, R., Abd Aziz, C. B., & Othman, Z. (2016). Tualang honey attenuates noise stress‐induced memory deficits in aged rats. Oxidative Medicine and Cellular Longevity, 2016(1), 1549158. https://doi.org/10.1155/2016/1549158

Barichello, T., Martins, M. R., Reinke, A., Feier, G., Ritter, C., Quevedo, J., & Dal-Pizzol, F. (2006). Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Critical Care Medicine, 34, 886–889. https://doi.org/10.1097/01.CCM.0000206109.25118.5C

Bezerra, M. L. R., Pereira, S. M. S., da Silva, R. P., Feitosa, C. M., & Almeida, R. N. (2023). Malicia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) improves depressive-like behaviour, somatic, biochemical and inflammatory parameters of obese rats. Food Research International, 164, 112391. https://doi.org/10.1016/j.foodres.2023.112391

Bezerra, M. L. R., Pereira, S. M. S., da Silva, R. P., Feitosa, C. M., & Almeida, R. N. (2025). Malícia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) shows antioxidant activity via phenolic compound action in obese rats. Frontiers in Nutrition, 12, 1524642. https://doi.org/10.3389/fnut.2025.1524642

Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2017). Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 63, 89–97. https://doi.org/10.1016/j.jfca.2017.07.003

Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International, 129, 108756. https://doi.org/10.1016/j.foodres.2019.108756

Bradford, R., Amaral, T. F., & Cesar, R. (2016). Frutos gordos neurodegenerescência. Acta Portuguesa de Nutrição, 6, 38–41.

Casarin, S. T., Sehnem, G. D., Neutzling, A. S., & Rosa, L. M. (2020). Tipos de revisão de literatura: Considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924

Cheng, M. Z. S. Z., Ahmad, S., Khalid, K., Ismail, N., Latif, M. A., & Al-Hatamleh, M. A. I. (2023). Stingless bee (Heterotrigona itama) honey and its phenolic-rich extract ameliorate oxidant-antioxidant balance via KEAP1-NRF2 signalling pathway. Nutrients, 15(13), 2835. https://doi.org/10.3390/nu15132835

Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., Zhang, J., & Giampieri, F. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322

Cisilotto, J., Spanevello, R. A., Mello, J. R. B., Fachinetto, R., & Felipe, K. B. (2018). Cytotoxicity mechanisms in melanoma cells and UPLC-QTOF/MS² chemical characterization of two Brazilian stingless bee propolis: Uncommon presence of piperidinic alkaloids. Journal of Pharmaceutical and Biomedical Analysis, 149, 502–511. https://doi.org/10.1016/j.jpba.2017.11.070

De Oliveira, R. G., dos Santos, F. M., Lima, M. A. M., Ferreira, S. L. C., & dos Santos, W. N. L. (2017). Screening for quality indicators and phenolic compounds of biotechnological interest in honey samples from six species of stingless bees (Hymenoptera: Apidae). Food Science and Technology, 37(4), 552–557. https://doi.org/10.1590/1678-457x.24016

Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: A review. Journal of the Science of Food and Agriculture, 96(13), 4303–4309. https://doi.org/10.1002/jsfa.7752

Duan, H., Liu, G., Hu, Y., Chen, J., Liu, Y., Wang, H., & Li, J. (2019). Quality evaluation of bee pollens by chromatographic fingerprint and simultaneous determination of its major bioactive components. Food and Chemical Toxicology, 134, 110831. https://doi.org/10.1016/j.fct.2019.110831

Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2012). Honey: A novel antioxidant. Molecules, 17(4), 4400–4423. https://doi.org/10.3390/molecules17044400

Gauthier, S., Rosa-Neto, P., Morais, J. A., & Cummings, J. (2021). World Alzheimer Report 2021: Journey through the diagnosis of dementia (313 p.). Alzheimer’s Disease International. https://www.alzint.org

Gil, A. C. (2017). Como elaborar projetos de pesquisa (6ª ed.). Atlas.

Godarzi, S. M., Aghazadeh, S., & Rashidi, M. (2020). Antioxidant effect of p-coumaric acid on interleukin-1β and tumor necrosis factor-α in rats with renal ischemia reperfusion. Nefrologia (English Edition), 40(3), 311–319. https://doi.org/10.1016/j.nefroe.2019.07.007

Guan, G., & Lan, S. (2018). Implications of antioxidant systems in inflammatory bowel disease. BioMed Research International, 2018, 1–15. https://doi.org/10.1155/2018/1290178

Guerrini, A., Sacchetti, G., Rossi, D., Paganetto, G., Grandini, A., Muzzoli, M., & Tognolini, M. (2009). Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry, 114(4), 1413–1420. https://doi.org/10.1016/j.foodchem.2008.11.041

Hampel, H., Toschi, N., Babiloni, C., Baldacci, F., Black, K. L., Bokde, A. L., ... & Vergallo, A. (2018). Revolution of Alzheimer precision neurology: Passageway of systems biology and neurophysiology. Journal of Alzheimer’s Disease, 64(1), 47–105. https://doi.org/10.3233/JAD-179935

He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry, 44(2), 532–553. https://doi.org/10.1159/000485089

Hochheim, S., Cardoso, M. V., Machado, A. M. R., & Moura, S. (2019). Determination of phenolic profile by HPLC–ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. Revista Brasileira de Farmacognosia, 29, 339–350. https://doi.org/10.1016/j.bjp.2018.12.002

Jayashree, V., Priyanka, N., Pradeep, P., & Divya, S. (2016). In vitro anti-inflammatory activity of 4-benzylpiperidine. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 108–110.

Kalantari, N., Ghaffari, S., Bayani, M., Shahrokhi, N., & Khakzad, M. R. (2016). Effect of honey on mRNA expression of TNF-α, IL-1β and IL-6 following acute toxoplasmosis in mice. Cytokine, 88, 85–90. https://doi.org/10.1016/j.cyto.2016.08.006

Kumar, S., & Pandey, A. K. (2015). Free radicals: Health implications and their mitigation by herbals. Journal of Advances in Medicine and Medical Research, 7(6), 438–457. https://doi.org/10.9734/BJMMR/2015/15328

Kwon, J. Y., Kim, H. J., Park, S. J., & Lee, Y. M. (2019). Perspective: Therapeutic potential of flavonoids as alternative medicines in epilepsy. Advances in Nutrition, 10, 778–790. https://doi.org/10.1093/advances/nmz047

Lee, J. H. (2019). Intracellular antioxidant activity and inhibition of bee pollens on the production of inflammatory mediators (P06-081-19). Current Developments in Nutrition, 3(Suppl. 1), 596. https://doi.org/10.1093/cdn/nzz029.P06-081-19

Lindqvist, D., Dhabhar, F. S., Mellon, S. H., Yehuda, R., & Flory, J. D. (2017). Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology, 76, 197–205. https://doi.org/10.1016/j.psyneuen.2016.11.034

Lins, A. C. S., Silva, M. S., Maia, G. A., & Silva, I. M. A. (2003). Flavonóides isolados do pólen coletado pela abelha Scaptotrigona bipunctata (canudo). Revista Brasileira de Farmacognosia, 13(2), 40–41. https://doi.org/10.1590/S0102-695X2003000200005

Lopes, A. J. O., Silva, E. L. C., Andrade, L. N., & Barreto, A. S. (2019). Anti-inflammatory and antinociceptive activity of pollen extract collected by stingless bee Melipona fasciculata. International Journal of Molecular Sciences, 20(18), 4512. https://doi.org/10.3390/ijms20184512

Lopes, A. J. O., Silva, E. L. C., Andrade, L. N., & Barreto, A. S. (2020). Anti-inflammatory and antioxidant activity of pollen extract collected by Scaptotrigona affinis postica: In silico, in vitro, and in vivo studies. Antioxidants, 9(2), 103. https://doi.org/10.3390/antiox9020103

Maruyama, H., Sakamoto, T., Araki, Y., Hara, H., & Ichikawa, K. (2010). Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complementary and Alternative Medicine, 10, 30. https://doi.org/10.1186/1472-6882-10-30

Abdul Kadar, N. N. M., Zakaria, R., Othman, Z., & Zulkifli, N. A. (2022). Comparable benefits of stingless bee honey and caffeic acid in mitigating the negative effects of metabolic syndrome on the brain. Antioxidants, 11(11), 2154. https://doi.org/10.3390/antiox11112154

Mustafa, M. Z., Omar, M. H., & Yaacob, N. S. (2019). Stingless bee honey improves spatial memory in mice, probably associated with brain‐derived neurotrophic factor (BDNF) and inositol 1,4,5‐triphosphate receptor type 1 (Itpr1) genes. Evidence-Based Complementary and Alternative Medicine, 2019, 8258307. https://doi.org/10.1155/2019/8258307

Nweze, J. A., Okafor, J. I., & Nweze, E. I. (2017). Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Research Notes, 10(566), 1–6. https://doi.org/10.1186/s13104-017-2893-3

Oliveira, E. N. A., & Santos, D. C. (2011). Análise físico-química de méis de abelhas africanizada e nativa. Revista do Instituto Adolfo Lutz, 70(2), 132–138.

Oliveira, P. S., Silva, I. G., Lima, Y. H., & Silva, J. C. (2012). Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) e Apis mellifera (Apidae, Apini) da Amazônia. Química Nova, 35(9), 1728–1732.

https://doi.org/10.1590/S01000422012000900014

Othman, Z. A., Zakaria, R., & Hussain, N. H. (2020). Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxidants, 9(33), 1–13. https://doi.org/10.3390/antiox9010033

Oyefuga, O., Oke, O. O., & Ekunwe, M. E. (2012). Honey consumption and its anti-ageing potency in white Wister albino rats. Scholarly Journal of Biological Science, 1(2), 15–19.

Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233–239. https://doi.org/10.1016/j.fct.2013.11.010

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (e-book gratuito). Universidade Federal de Santa Maria – UFSM. https://repositorio.ufsm.br/handle/1/15824

Perusso, E. (2022). Características químicas e compostos bioativos de pólen (saburá) de abelhas Scaptotrigona spp. [Dissertação de Mestrado, Universidade Estadual do Oeste do Paraná].

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Ranneh, Y., Ali, F., Zarei, M., Akim, A. M., Khaza’ai, H., Fadel, A., & Hamid, H. A. (2018). Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography–mass spectrometry. LWT – Food Science and Technology, 89, 1–9. https://doi.org/10.1016/j.lwt.2017.10.039

Ranneh, Y., Ali, F., Zarei, M., Khaza’ai, H., & Hamid, H. A. (2019). Stingless bee honey protects against lipopolysaccharide-induced chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutrition and Metabolism, 16(1), 1–17. https://doi.org/10.1186/s12986-019-0371-0

Rao, P. V., Krishnan, K. T., Salleh, N., & Gan, S. H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia, 26(5), 657–664. https://doi.org/10.1016/j.bjp.2016.01.012

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem, 20(2), v–vi. https://doi.org/10.1590/S0103-21002007000200001

Rodríguez-Malaver, A. J., Reyna-Bello, A., & Vit, P. (2009). Properties of honey from ten species of Peruvian stingless bees. Natural Product Communications, 4(9), 1221–1226.

Rouzer, C. A., & Marnett, L. J. (2009). Cyclooxygenases: Structural and functional insights. Journal of Lipid Research, 50(Suppl), S29–S34. https://doi.org/10.1194/jlr.R800042-JLR200

Ruiz-Ruiz, J. C. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424–1437. https://doi.org/10.1080/09540105.2017.1366884

Sattler, J. A. G., de Melo, I. L. P., Pastore, G. M., & de Almeida-Muradian, L. B. (2015). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International, 77, 82–91. https://doi.org/10.1016/j.foodres.2015.09.016

Silva, C. L., Queiroz, A. J. M., & Figueirêdo, R. M. F. (2004). Caracterização físico-química de méis produzidos no Estado do Piauí para diferentes floradas. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(2–3), 267–271. https://doi.org/10.1590/S1415-43662004000200015

Silva, G. R., Oliveira, T. S., & Almeida-Muradian, L. B. (2014). Identificação de açúcares, aminoácidos e minerais do pólen de abelhas sem ferrão Jandaíra (Melipona subnitida). Food and Nutrition Sciences, 5, 1015–1021. https://doi.org/10.4236/fns.2014.511110

Silva, T. M. S., dos Santos, F. P., Evangelista-Rodrigues, A., da Silva, E. M. S., da Silva, G. S., de Novais, J. S., Camara, C. A., & Silva, E. M. S. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis, 19, 507–511. https://doi.org/10.1016/j.jfca.2006.03.014

Vasconcelos, T. B., Duarte, F. G., Souza, M. L., & Santos, G. T. (2014). Radicais livres e antioxidantes: Proteção ou perigo? UNOPAR Científica: Ciências Biológicas e da Saúde, 16(3), 213–219.

Villas-Bôas, J. (2012). Manual tecnológico: Mel de abelhas sem ferrão (Série Manual Tecnológico). Instituto Sociedade, População e Natureza (ISPN).

Zakaria, F. H., Othman, Z., & Hassan, A. (2022). Pathophysiology of depression: Stingless bee honey promising as an antidepressant. Molecules, 27(16), 5091. https://doi.org/10.3390/molecules27165091

Zhou, J., Wan, Y., Wang, W., Liu, G., Li, Y., & Qu, H. (2015). Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control, 57, 54–61. https://doi.org/10.1016/j.foodcont.2015.03.018

Zulkifli, N. A., Abdul Kadar, N. N. M., Zakaria, R., & Othman, Z. (2023). The potential neuroprotective effects of stingless bee honey. Frontiers in Aging Neuroscience, 14, 1048028. https://doi.org/10.3389/fnagi.2022.1048028

Downloads

Publicado

2025-07-09

Edição

Seção

Ciências Agrárias e Biológicas

Como Citar

Propriedades funcionais do mel e pólen de abelhas nativas sem ferrão: Uma revisão sobre seus efeitos neuroprotetores, antioxidantes e anti-inflamatórios. Research, Society and Development, [S. l.], v. 14, n. 7, p. e2714749202, 2025. DOI: 10.33448/rsd-v14i7.49202. Disponível em: https://rsdjournal.org/rsd/article/view/49202. Acesso em: 5 dez. 2025.