Propiedades funcionales de la miel y el polen de abejas nativas sin aguijón: Una revisión sobre sus efectos neuroprotectores, antioxidantes y antiinflamatorios
DOI:
https://doi.org/10.33448/rsd-v14i7.49202Palabras clave:
Enfermedades neurodegenerativas, Radicales libres, Meliponinos, Prevención.Resumen
Las enfermedades neurodegenerativas son la principal causa de demencia en personas mayores, representando hasta el 70% de los casos. Con el envejecimiento global, se estima que el número de personas con demencia se triplicará para el año 2050. Estas enfermedades provocan pérdida de memoria episódica, avanzando hacia un deterioro cognitivo y motor que requiere cuidados intensivos. El estrés oxidativo, causado por el desequilibrio entre la producción y la eliminación de radicales libres, desempeña un papel fundamental en la neurodegeneración. Este estudio tiene como objetivo revisar la literatura sobre los compuestos antioxidantes presentes en la miel y el polen de abejas nativas sin aguijón y sus posibles efectos neuroprotectores en enfermedades neurodegenerativas. Se realizó una revisión bibliográfica en bases de datos como Scielo, Google Académico y PubMed, priorizando artículos publicados en inglés y portugués. Los estudios revisados sugieren que el consumo regular de miel y polen de abejas nativas sin aguijón puede proporcionar beneficios a largo plazo para la salud cerebral, destacando su potencial en la prevención de enfermedades neurodegenerativas. Se concluye, por tanto, que la miel y el polen de abejas nativas sin aguijón se perfilan como fuentes naturales prometedoras de compuestos antioxidantes con potencial neuroprotector, lo que refuerza la necesidad de investigaciones más profundas sobre su papel en la prevención y el retraso de la progresión de enfermedades neurodegenerativas.
Referencias
Abreu, B. V. B. (2016). Bioprospecção de pólen de Melipona fasciculata SMITH [Tese de doutorado, Universidade Federal do Maranhão]. Universidade Federal do Maranhão.
Al-Hatamleh, M. A. I., Ahmad, S., Shukor, N. A., Khazim, N., Abdul-Rahman, N. S., Fathil, S. M., & Hasan, H. (2020). Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules, 10(6), 923. https://doi.org/10.3390/biom10060923
Anacleto, D. A., Marchini, L. C., Moreti, A. C. C. C., Otsuk, I. P., & Silva, R. A. N. (2009). Composição de amostras de mel de abelha Jataí (Tetragonisca angustula Latreille, 1811). Ciência e Tecnologia de Alimentos, 29(3), 535–541. https://doi.org/10.1590/S0101-20612009000300008
Ávila, S., Miguel, M. G., Oliveira, R. C., Rosado, C., & Figueiredo, A. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science & Technology, 81, 37–50. https://doi.org/10.1016/j.tifs.2018.08.006
Azman, K. F., Zakaria, R., Abd Aziz, C. B., & Othman, Z. (2016). Tualang honey attenuates noise stress‐induced memory deficits in aged rats. Oxidative Medicine and Cellular Longevity, 2016(1), 1549158. https://doi.org/10.1155/2016/1549158
Barichello, T., Martins, M. R., Reinke, A., Feier, G., Ritter, C., Quevedo, J., & Dal-Pizzol, F. (2006). Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Critical Care Medicine, 34, 886–889. https://doi.org/10.1097/01.CCM.0000206109.25118.5C
Bezerra, M. L. R., Pereira, S. M. S., da Silva, R. P., Feitosa, C. M., & Almeida, R. N. (2023). Malicia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) improves depressive-like behaviour, somatic, biochemical and inflammatory parameters of obese rats. Food Research International, 164, 112391. https://doi.org/10.1016/j.foodres.2023.112391
Bezerra, M. L. R., Pereira, S. M. S., da Silva, R. P., Feitosa, C. M., & Almeida, R. N. (2025). Malícia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) shows antioxidant activity via phenolic compound action in obese rats. Frontiers in Nutrition, 12, 1524642. https://doi.org/10.3389/fnut.2025.1524642
Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2017). Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 63, 89–97. https://doi.org/10.1016/j.jfca.2017.07.003
Biluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International, 129, 108756. https://doi.org/10.1016/j.foodres.2019.108756
Bradford, R., Amaral, T. F., & Cesar, R. (2016). Frutos gordos neurodegenerescência. Acta Portuguesa de Nutrição, 6, 38–41.
Casarin, S. T., Sehnem, G. D., Neutzling, A. S., & Rosa, L. M. (2020). Tipos de revisão de literatura: Considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924
Cheng, M. Z. S. Z., Ahmad, S., Khalid, K., Ismail, N., Latif, M. A., & Al-Hatamleh, M. A. I. (2023). Stingless bee (Heterotrigona itama) honey and its phenolic-rich extract ameliorate oxidant-antioxidant balance via KEAP1-NRF2 signalling pathway. Nutrients, 15(13), 2835. https://doi.org/10.3390/nu15132835
Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., Zhang, J., & Giampieri, F. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322
Cisilotto, J., Spanevello, R. A., Mello, J. R. B., Fachinetto, R., & Felipe, K. B. (2018). Cytotoxicity mechanisms in melanoma cells and UPLC-QTOF/MS² chemical characterization of two Brazilian stingless bee propolis: Uncommon presence of piperidinic alkaloids. Journal of Pharmaceutical and Biomedical Analysis, 149, 502–511. https://doi.org/10.1016/j.jpba.2017.11.070
De Oliveira, R. G., dos Santos, F. M., Lima, M. A. M., Ferreira, S. L. C., & dos Santos, W. N. L. (2017). Screening for quality indicators and phenolic compounds of biotechnological interest in honey samples from six species of stingless bees (Hymenoptera: Apidae). Food Science and Technology, 37(4), 552–557. https://doi.org/10.1590/1678-457x.24016
Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: A review. Journal of the Science of Food and Agriculture, 96(13), 4303–4309. https://doi.org/10.1002/jsfa.7752
Duan, H., Liu, G., Hu, Y., Chen, J., Liu, Y., Wang, H., & Li, J. (2019). Quality evaluation of bee pollens by chromatographic fingerprint and simultaneous determination of its major bioactive components. Food and Chemical Toxicology, 134, 110831. https://doi.org/10.1016/j.fct.2019.110831
Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2012). Honey: A novel antioxidant. Molecules, 17(4), 4400–4423. https://doi.org/10.3390/molecules17044400
Gauthier, S., Rosa-Neto, P., Morais, J. A., & Cummings, J. (2021). World Alzheimer Report 2021: Journey through the diagnosis of dementia (313 p.). Alzheimer’s Disease International. https://www.alzint.org
Gil, A. C. (2017). Como elaborar projetos de pesquisa (6ª ed.). Atlas.
Godarzi, S. M., Aghazadeh, S., & Rashidi, M. (2020). Antioxidant effect of p-coumaric acid on interleukin-1β and tumor necrosis factor-α in rats with renal ischemia reperfusion. Nefrologia (English Edition), 40(3), 311–319. https://doi.org/10.1016/j.nefroe.2019.07.007
Guan, G., & Lan, S. (2018). Implications of antioxidant systems in inflammatory bowel disease. BioMed Research International, 2018, 1–15. https://doi.org/10.1155/2018/1290178
Guerrini, A., Sacchetti, G., Rossi, D., Paganetto, G., Grandini, A., Muzzoli, M., & Tognolini, M. (2009). Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry, 114(4), 1413–1420. https://doi.org/10.1016/j.foodchem.2008.11.041
Hampel, H., Toschi, N., Babiloni, C., Baldacci, F., Black, K. L., Bokde, A. L., ... & Vergallo, A. (2018). Revolution of Alzheimer precision neurology: Passageway of systems biology and neurophysiology. Journal of Alzheimer’s Disease, 64(1), 47–105. https://doi.org/10.3233/JAD-179935
He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry, 44(2), 532–553. https://doi.org/10.1159/000485089
Hochheim, S., Cardoso, M. V., Machado, A. M. R., & Moura, S. (2019). Determination of phenolic profile by HPLC–ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. Revista Brasileira de Farmacognosia, 29, 339–350. https://doi.org/10.1016/j.bjp.2018.12.002
Jayashree, V., Priyanka, N., Pradeep, P., & Divya, S. (2016). In vitro anti-inflammatory activity of 4-benzylpiperidine. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 108–110.
Kalantari, N., Ghaffari, S., Bayani, M., Shahrokhi, N., & Khakzad, M. R. (2016). Effect of honey on mRNA expression of TNF-α, IL-1β and IL-6 following acute toxoplasmosis in mice. Cytokine, 88, 85–90. https://doi.org/10.1016/j.cyto.2016.08.006
Kumar, S., & Pandey, A. K. (2015). Free radicals: Health implications and their mitigation by herbals. Journal of Advances in Medicine and Medical Research, 7(6), 438–457. https://doi.org/10.9734/BJMMR/2015/15328
Kwon, J. Y., Kim, H. J., Park, S. J., & Lee, Y. M. (2019). Perspective: Therapeutic potential of flavonoids as alternative medicines in epilepsy. Advances in Nutrition, 10, 778–790. https://doi.org/10.1093/advances/nmz047
Lee, J. H. (2019). Intracellular antioxidant activity and inhibition of bee pollens on the production of inflammatory mediators (P06-081-19). Current Developments in Nutrition, 3(Suppl. 1), 596. https://doi.org/10.1093/cdn/nzz029.P06-081-19
Lindqvist, D., Dhabhar, F. S., Mellon, S. H., Yehuda, R., & Flory, J. D. (2017). Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology, 76, 197–205. https://doi.org/10.1016/j.psyneuen.2016.11.034
Lins, A. C. S., Silva, M. S., Maia, G. A., & Silva, I. M. A. (2003). Flavonóides isolados do pólen coletado pela abelha Scaptotrigona bipunctata (canudo). Revista Brasileira de Farmacognosia, 13(2), 40–41. https://doi.org/10.1590/S0102-695X2003000200005
Lopes, A. J. O., Silva, E. L. C., Andrade, L. N., & Barreto, A. S. (2019). Anti-inflammatory and antinociceptive activity of pollen extract collected by stingless bee Melipona fasciculata. International Journal of Molecular Sciences, 20(18), 4512. https://doi.org/10.3390/ijms20184512
Lopes, A. J. O., Silva, E. L. C., Andrade, L. N., & Barreto, A. S. (2020). Anti-inflammatory and antioxidant activity of pollen extract collected by Scaptotrigona affinis postica: In silico, in vitro, and in vivo studies. Antioxidants, 9(2), 103. https://doi.org/10.3390/antiox9020103
Maruyama, H., Sakamoto, T., Araki, Y., Hara, H., & Ichikawa, K. (2010). Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complementary and Alternative Medicine, 10, 30. https://doi.org/10.1186/1472-6882-10-30
Abdul Kadar, N. N. M., Zakaria, R., Othman, Z., & Zulkifli, N. A. (2022). Comparable benefits of stingless bee honey and caffeic acid in mitigating the negative effects of metabolic syndrome on the brain. Antioxidants, 11(11), 2154. https://doi.org/10.3390/antiox11112154
Mustafa, M. Z., Omar, M. H., & Yaacob, N. S. (2019). Stingless bee honey improves spatial memory in mice, probably associated with brain‐derived neurotrophic factor (BDNF) and inositol 1,4,5‐triphosphate receptor type 1 (Itpr1) genes. Evidence-Based Complementary and Alternative Medicine, 2019, 8258307. https://doi.org/10.1155/2019/8258307
Nweze, J. A., Okafor, J. I., & Nweze, E. I. (2017). Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Research Notes, 10(566), 1–6. https://doi.org/10.1186/s13104-017-2893-3
Oliveira, E. N. A., & Santos, D. C. (2011). Análise físico-química de méis de abelhas africanizada e nativa. Revista do Instituto Adolfo Lutz, 70(2), 132–138.
Oliveira, P. S., Silva, I. G., Lima, Y. H., & Silva, J. C. (2012). Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) e Apis mellifera (Apidae, Apini) da Amazônia. Química Nova, 35(9), 1728–1732.
https://doi.org/10.1590/S01000422012000900014
Othman, Z. A., Zakaria, R., & Hussain, N. H. (2020). Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxidants, 9(33), 1–13. https://doi.org/10.3390/antiox9010033
Oyefuga, O., Oke, O. O., & Ekunwe, M. E. (2012). Honey consumption and its anti-ageing potency in white Wister albino rats. Scholarly Journal of Biological Science, 1(2), 15–19.
Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233–239. https://doi.org/10.1016/j.fct.2013.11.010
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (e-book gratuito). Universidade Federal de Santa Maria – UFSM. https://repositorio.ufsm.br/handle/1/15824
Perusso, E. (2022). Características químicas e compostos bioativos de pólen (saburá) de abelhas Scaptotrigona spp. [Dissertação de Mestrado, Universidade Estadual do Oeste do Paraná].
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Ranneh, Y., Ali, F., Zarei, M., Akim, A. M., Khaza’ai, H., Fadel, A., & Hamid, H. A. (2018). Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography–mass spectrometry. LWT – Food Science and Technology, 89, 1–9. https://doi.org/10.1016/j.lwt.2017.10.039
Ranneh, Y., Ali, F., Zarei, M., Khaza’ai, H., & Hamid, H. A. (2019). Stingless bee honey protects against lipopolysaccharide-induced chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutrition and Metabolism, 16(1), 1–17. https://doi.org/10.1186/s12986-019-0371-0
Rao, P. V., Krishnan, K. T., Salleh, N., & Gan, S. H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia, 26(5), 657–664. https://doi.org/10.1016/j.bjp.2016.01.012
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem, 20(2), v–vi. https://doi.org/10.1590/S0103-21002007000200001
Rodríguez-Malaver, A. J., Reyna-Bello, A., & Vit, P. (2009). Properties of honey from ten species of Peruvian stingless bees. Natural Product Communications, 4(9), 1221–1226.
Rouzer, C. A., & Marnett, L. J. (2009). Cyclooxygenases: Structural and functional insights. Journal of Lipid Research, 50(Suppl), S29–S34. https://doi.org/10.1194/jlr.R800042-JLR200
Ruiz-Ruiz, J. C. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424–1437. https://doi.org/10.1080/09540105.2017.1366884
Sattler, J. A. G., de Melo, I. L. P., Pastore, G. M., & de Almeida-Muradian, L. B. (2015). Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil: A screening study. Food Research International, 77, 82–91. https://doi.org/10.1016/j.foodres.2015.09.016
Silva, C. L., Queiroz, A. J. M., & Figueirêdo, R. M. F. (2004). Caracterização físico-química de méis produzidos no Estado do Piauí para diferentes floradas. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(2–3), 267–271. https://doi.org/10.1590/S1415-43662004000200015
Silva, G. R., Oliveira, T. S., & Almeida-Muradian, L. B. (2014). Identificação de açúcares, aminoácidos e minerais do pólen de abelhas sem ferrão Jandaíra (Melipona subnitida). Food and Nutrition Sciences, 5, 1015–1021. https://doi.org/10.4236/fns.2014.511110
Silva, T. M. S., dos Santos, F. P., Evangelista-Rodrigues, A., da Silva, E. M. S., da Silva, G. S., de Novais, J. S., Camara, C. A., & Silva, E. M. S. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis, 19, 507–511. https://doi.org/10.1016/j.jfca.2006.03.014
Vasconcelos, T. B., Duarte, F. G., Souza, M. L., & Santos, G. T. (2014). Radicais livres e antioxidantes: Proteção ou perigo? UNOPAR Científica: Ciências Biológicas e da Saúde, 16(3), 213–219.
Villas-Bôas, J. (2012). Manual tecnológico: Mel de abelhas sem ferrão (Série Manual Tecnológico). Instituto Sociedade, População e Natureza (ISPN).
Zakaria, F. H., Othman, Z., & Hassan, A. (2022). Pathophysiology of depression: Stingless bee honey promising as an antidepressant. Molecules, 27(16), 5091. https://doi.org/10.3390/molecules27165091
Zhou, J., Wan, Y., Wang, W., Liu, G., Li, Y., & Qu, H. (2015). Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control, 57, 54–61. https://doi.org/10.1016/j.foodcont.2015.03.018
Zulkifli, N. A., Abdul Kadar, N. N. M., Zakaria, R., & Othman, Z. (2023). The potential neuroprotective effects of stingless bee honey. Frontiers in Aging Neuroscience, 14, 1048028. https://doi.org/10.3389/fnagi.2022.1048028
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Flavia Maria Vasques Farinazzi Machado; Giovana Silva Camucha; Renata Bonini Pardo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
