Generative Artificial Intelligence (AI) in undergraduate Medical education in Brazil: A scoping review of the current landscape and implications from the 2025 Curriculum Guidelines
DOI:
https://doi.org/10.33448/rsd-v15i1.50071Keywords:
Artificial Intelligence, Medical Education, Educational Technology, Teaching.Abstract
This study presents a scoping review on the application of generative artificial intelligence in undergraduate medical education in Brazil, with an emphasis on the ChatGPT tool. Nine studies published until September 2025 were analyzed through searches in national and international databases. Thematic analysis revealed five main categories: technologies used, student perceptions and usability, integration with pedagogical strategies, implementation challenges, and contributions to medical training. Findings indicate high potential of artificial intelligence in supporting clinical reasoning, active methodologies, and formative feedback, while also highlighting gaps in faculty mediation and institutional policies. The results align with competencies defined by the 2025 DCNs, reinforcing the need for ethical, critical, and digital training for safe integration of these technologies into medical education.
References
Alessi, A., Faria, B. S., Marques, G. S., & Bastos, V. H. (2025). Comparative performance of medical students, ChatGPT-3.5 and ChatGPT-4.0 in answering questions from a Brazilian National Medical Exam: Cross-sectional questionnaire study. JMIR Medical Education, 11(1), e54736. https://doi.org/10.2196/54736
Ammenwerth, E., Haux, R., Knaup, P., & Rigby, M. (2023). Yearbook of medical informatics: Generative artificial intelligence in medicine and health. Thieme Medical Publishers. https://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00034612
Bacelar, A. (2025). Inteligência artificial e modelos de linguagem no ensino médico. Revista Educação & Inovação.
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... Liang, P. (2022). On the opportunities and risks of foundation models. Stanford Institute for Human-Centered Artificial Intelligence (HAI). https://doi.org/10.48550/arXiv.2108.07258
Carvalho, M. R. de, Greco, M. E., & Souza, D. M. de. (2025). Uso do ChatGPT como ferramenta complementar de estudo e ensino no curso de medicina. Educação & Pesquisa, 51, e288875. https://doi.org/10.1590/S1678-4634202551288875
Conselho Nacional de Educação, Câmara de Educação Superior. (2025, 30 de setembro). Resolução CNE/CES nº 3, de 30 de setembro de 2025: Institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Medicina. Diário Oficial da União, Seção 1, 187, 35–37.
Costa, M. J. M., Santos, D. W. dos, & Bottentuit Junior, J. B. (2024). Inteligência artificial e metodologias ativas no ensino de medicina: Percepções dos discentes de habilidades médicas de um centro universitário. Revista Intersaberes, 19, e24do3003.
Falco Neto, W., Scriboni Gonzalez, M. A. B., Pissolito, J. F., & Azevedo, L. R. de. (2024). Inteligência artificial aplicada à medicina: Relato de experiência na graduação médica. Cuidarte Enfermagem, 18(1), 98–102.
Hale, A. R., Walker, S. M., & Zafar, A. (2024). Generative AI in undergraduate medical education: Opportunities and challenges. Medical Science Educator, 34(2), 215–228. https://doi.org/10.1177/23821205241266697
Lobo, L. C. (2018). Inteligência artificial, o futuro da medicina e a educação médica. Revista Brasileira de Educação Médica, 42(3), 3–8. https://doi.org/10.1590/1981-52712015v42n3RB20180115EDITORIAL1
Neves, A. V. S. da C., Barbosa, D. S., Machado, C. J. dos S., & Neves, V. N. S. (2025b). O ChatGPT na educação médica e os Objetivos de Desenvolvimento Sustentável: Uma análise cientométrica. Revista Brasileira de Educação Médica, 49(1), 102–110. https://doi.org/10.xxxxx/rbem.v49i1.XXXXX
Neves, A. V. S. da C., Macêdo, W. C. M. de, & Fialho, L. M. F. (2025a). Inteligência artificial na educação médica: Evidências dos estudos latino-americanos. Revista Eletrônica Científica Ensino Interdisciplinar, 11(35), 117–125.
Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... McKenzie, J. E. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Preiksaitis, J., Shah, H., & McLaughlin, J. (2023). Opportunities, challenges, and future directions of generative AI in medical education. JMIR Medical Education, 9(1), e48785. https://doi.org/10.2196/48785
Ribeiro, L. M. (2024). A inteligência artificial como ferramenta transformadora da educação médica. Cadernos de Tecnologia Educacional, 18(3), 55–68.
Sampaio, R. C., Sabbatini, M., & Limongi, R. (2024). Diretrizes para o uso ético e responsável da inteligência artificial generativa: Um guia prático para pesquisadores. São Paulo: Editora Intercom.
Saroha, S., Verma, N., & Gupta, P. (2025). Artificial intelligence in medical education: Promise, pitfalls, and future directions. Journal of Advances in Medical Education & Practice, 16(2), 120–132. https://pmc.ncbi.nlm.nih.gov/articles/PMC12176979/
Silva, G. M., Oliveira, P. F., & Cardoso, D. R. (2023). O uso da inteligência artificial na docência em medicina: percepções de docentes e discentes. Revista Saúde Multidisciplinar, 9(1), 45–56. https://revistas.famp.edu.br/revistasaudemultidisciplinar/article/view/890/437
Silva, R. P., & Almeida, C. F. (2025). Inteligência artificial na formação médica: Perspectivas e desafios. Revista Ensino Médico Digital, 7(1), 1–14.
Silva, T. F., & Fregadolli, C. (2025). A eficácia do ChatGPT no ensino de medicina por meio de mapeamento sistemático. Revista de Inovação em Saúde, 13(2), 45–59.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104, 333-9. Doi: https://doi.org/10.1016/j.jbusres.2019.07.039.
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Iane Franceschet de Sousa, Victor Franceschet de Sousa, Alício Rocha de Sousa Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
