Use of Artificial Intelligence in epidemiological data for Decision-Making in Health
DOI:
https://doi.org/10.33448/rsd-v15i1.50563Keywords:
Artificial Intelligence, Epidemiology and Biostatistics, Decision Making, Clinical Medicine, Use of Scientific Information in Health Decision-Making.Abstract
Objective: To evaluate the feasibility of using artificial intelligence (AI), via the ChatGPT o3 Mini High model, to analyze epidemiological mortality data from traffic accidents and provide support for decision-making in health. Methodology: This is an observational, descriptive, exploratory study using secondary data from the Mortality Information System (SIM) and from the State Health Secretariat of Minas Gerais, regarding deaths by external causes (ICD-10 V01–V99) between 2010 and 2024. The dataset underwent cleaning and filtering, then was enriched with structured prompts in the ChatGPT o3 Mini High to cross variables and identify demographic, temporal, and accident-type patterns. Results: A total of 219 traffic-accident death records from the Itajubá-MG region and surrounding municipalities were analyzed. The AI model performed descriptive and correlational analyses and suggested interventions such as targeted educational campaigns, road infrastructure improvements, and directed enforcement. Findings included a predominance of deaths among men aged 20–39, seasonality in festive periods, and higher incidence of motorcycle collisions and pedestrian strikes. Conclusion: The application of ChatGPT o3 Mini High proved viable as a tool to support epidemiological analysis of traffic mortality. Its outputs suggest potential to guide more assertive health policies. Future work should expand to other regional datasets, test reproducibility, and train local health managers to use this technology.
References
Andrade, L. A., Ferreira, F. A., Silva, M. R., Costa, J. D., & Oliveira, P. R. (2023). Spatiotemporal trends in deaths from external causes in Brazil, 2000–2022. PLoS ONE, 18(5), e0285472. https://doi.org/10.1371/journal.pone.0285472
Balasubramanian, S., Rao, B. S., Patel, V., & Sundararajan, V. (2023). Applying artificial intelligence in healthcare: Lessons from the COVID-19 pandemic. International Journal of Production Research, 61(16), 5641–5654. https://doi.org/10.1080/00207543.2022.2138781
Behboudi, N., Mohammadi, R., Sadeghi-Niaraki, A., & Choi, S. M. (2024). Recent advances in traffic accident analysis and prediction: A comprehensive review. Accident Analysis & Prevention, 201, 107084. https://doi.org/10.1016/j.aap.2024.107084
Bertsimas, D., Boussioux, L., Cory-Wright, R., Digalakis, V., Kitane, D., Lukin, G., ... & Veliche, R. (2021). From predictions to prescriptions: A data-driven response to COVID-19. Health Care Management Science, 24(2), 253–272. https://doi.org/10.1007/s10729-020-09523-1
Bhalla, K., Naghavi, M., Shahraz, S., Bartels, D., & Murray, C. J. L. (2010). Under-reporting of road traffic injuries in low-income and middle-income countries: A systematic review. Injury Prevention, 16(Suppl 1), A177. https://doi.org/10.1136/ip.2010.029215.624
Botero, D. A. M., Bonfim, R., Fonseca, K., Andrade-Gonçalves, R. L. P., Monroe, A. A., & Morales, F. (2025). Artificial intelligence in Brazilian Primary Health Care: Scoping review. Revista Brasileira de Enfermagem, 78(Suppl. 3), e20240363. https://doi.org/10.1590/0034-7167-2024-0363
Cheah, B. C. J., Vicente, C. R., & Chan, K. R. (2025). Machine learning and artificial intelligence for infectious disease surveillance, diagnosis, and prognosis. Viruses, 17(7), 882. https://doi.org/10.3390/v17070882
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
Demšar J, Curk T, Erjavec A, et al. Orange: Data mining toolbox in Python. Journal of Machine Learning Research. 2013;14:2349–2353.Disponível em: https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf.Acesso em: 12 dez. 2025.
Dourado, A., Ribeiro, J. M., & Santos, R. F. (2022). The regulation of artificial intelligence for health in Brazil. Revista de Saúde Pública, 56, 31. https://doi.org/10.11606/s1518-8787.2022056004271
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
Filgueiras, F., Lui, L., & Veloso, M. T. T. (2024). A gramática institucional da proteção de dados e da privacidade no Brasil. Dados, 68(1), e20220169. https://periodicos.fgv.br/cgpc/announcement/view/323
Global Injury and Violence. (2008). Global burden of injuries and violence. World Health Organization. https://www.who.int/violence_injury_prevention/global_burden
Goodman, K. E., Shams, S. M., Magder, L. S., Baghdadi, J. D., Morgan, D. J., & Harris, A. D. (2025). Generative artificial intelligence–based surveillance for avian influenza across a statewide healthcare system. Clinical Infectious Diseases, 81(5), 900–903. https://doi.org/10.1093/cid/ciaf369
Katonai, G., Arvai, N., & Mesko, B. (2025). AI and primary care: Scoping review. Journal of Medical Internet Research, 27, e65950. https://doi.org/10.2196/65950
Ministério da Justiça e Segurança Pública. (s.d.). Mortes por causas externas: Qualificação dos registros inespecíficos. Brasília: Ministério da Justiça e Segurança Pública. Disponível em https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/mortes-por-causas-externas-qualificacao-dos-registros-inespecificos.pdf (Acesso em 12 dez. 2025).
Panteli, D., Adib, K., Buttigieg, S., Goiana-da-Silva, F., Ladewig, K., Azzopardi-Muscat, N., Figueras, J., Novillo-Ortiz, D., & McKee, M. (2025). Artificial intelligence in public health: promises, challenges, and an agenda for policy makers and public health institutions. The Lancet Public Health, 10(5), e428–e432. https://doi.org/10.1016/S2468-2667(25)00036-2
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (Free ebook). Santa Maria. Editora da UFSM.
Prado, N. M. B. L., Barreto, J. O. M., Silva, L. L. S., Santos, H. L. P. C., & Andrade, L. O. M. (2021). Ações de vigilância à saúde integradas à APS diante da COVID-19. Ciência & Saúde Coletiva, 26(7), 2843–2857. https://doi.org/10.1590/1413-81232021267.01262021
Romero Llerena, M. A., & Pandia Yañez, E. J. (2025). La inteligencia artificial en la salud pública: mejorando la atención médica y previniendo enfermedades [Artificial intelligence in public health: Improving medical care and preventing diseases]. Aula Virtual, 6(13). https://doi.org/10.5281/zenodo.17247148
Santos, A. M. R., Rodrigues, R. A. P., & Diniz, M. A. (2015). Trauma no idoso por acidente de trânsito: Revisão integrativa. Revista da Escola de Enfermagem da USP, 49(1), 162–172. https://doi.org/10.1590/S0080-623420150000100021
Sete, G., & Alemu, S. T. (2025). Distribution of causes of death and associated organ injuries in road traffic accident-related fatalities: A postmortem study in Addis Ababa, Ethiopia. BMC Public Health, 25(1), 38. https://doi.org/10.1186/s12889-024-21220-2
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed). Editora Érica.
Tang, S. H., Dai, Z. X., Wang, W., Jiang, X., Tai, Z. Y., Wang, L. P., Zhang, Y. P., Yang, W. Z., Cao, Z. D., & Peng, Z. H. (2025). Artificial intelligence in surveillance and early warning of infectious diseases: Current status and challenges. Zhonghua Liu Xing Bing Xue Za Zhi, 46(10), 1886–1891. https://doi.org/10.3760/cma.j.cn112338-20250211-00081
Vecino-Ortiz, A. I., Nagarajan, M., Elaraby, S., Guzman-Tordecilla, D. N., Paichadze, N., & Hyder, A. A. (2022). Saving lives through road safety risk factor interventions: Global and national estimates. The Lancet, 400(10347), 237–250. https://doi.org/10.1016/S0140-6736(22)00918-7
World Health Organization. (2018). Global status report on road safety 2018. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789241565684
World Health Organization. (2021, October 29). Decade of Action for Road Safety 2021–2030 launched by WHO. United Nations Brazil. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030
World Health Organization. (2023a). Road traffic injuries: Fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
World Health Organization. (2023b). SDG target 3.6 – Road traffic injuries. World Health Organization. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-injuries
World Health Organization. (2023c). Road traffic mortality: Data and trends. Global Health Observatory (GHO) data. World Health Organization. https://www.who.int/data/gho/data/themes/topics/road-safety
Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—From local detection to global epidemic monitoring and control. In Artificial Intelligence in Medicine: Technical Basis and Clinical Applications (pp. 437–453). Academic Press. https://doi.org/10.1016/B978-0-12-821259-2.00022-3
Zeng Z, Chen PJ, Lew AA. From high-touch to high-tech: COVID-19 drives the digital transformation of intelligence and data. Tourism Geographies. 2020;22(3):724–734.DOI:10.1080/14616688.2020.1762118
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Gerson Hiroshi Yoshinari Júnior, Henrique Ferrer Bueno, Hiago Lopes Medrado, Renato Augusto Passos, Tainara de Faria Silva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
