Use of Artificial Intelligence in epidemiological data for Decision-Making in Health

Authors

DOI:

https://doi.org/10.33448/rsd-v15i1.50563

Keywords:

Artificial Intelligence, Epidemiology and Biostatistics, Decision Making, Clinical Medicine, Use of Scientific Information in Health Decision-Making.

Abstract

Objective: To evaluate the feasibility of using artificial intelligence (AI), via the ChatGPT o3 Mini High model, to analyze epidemiological mortality data from traffic accidents and provide support for decision-making in health. Methodology: This is an observational, descriptive, exploratory study using secondary data from the Mortality Information System (SIM) and from the State Health Secretariat of Minas Gerais, regarding deaths by external causes (ICD-10 V01–V99) between 2010 and 2024. The dataset underwent cleaning and filtering, then was enriched with structured prompts in the ChatGPT o3 Mini High to cross variables and identify demographic, temporal, and accident-type patterns. Results: A total of 219 traffic-accident death records from the Itajubá-MG region and surrounding municipalities were analyzed. The AI model performed descriptive and correlational analyses and suggested interventions such as targeted educational campaigns, road infrastructure improvements, and directed enforcement. Findings included a predominance of deaths among men aged 20–39, seasonality in festive periods, and higher incidence of motorcycle collisions and pedestrian strikes. Conclusion: The application of ChatGPT o3 Mini High proved viable as a tool to support epidemiological analysis of traffic mortality. Its outputs suggest potential to guide more assertive health policies. Future work should expand to other regional datasets, test reproducibility, and train local health managers to use this technology.

References

Andrade, L. A., Ferreira, F. A., Silva, M. R., Costa, J. D., & Oliveira, P. R. (2023). Spatiotemporal trends in deaths from external causes in Brazil, 2000–2022. PLoS ONE, 18(5), e0285472. https://doi.org/10.1371/journal.pone.0285472

Balasubramanian, S., Rao, B. S., Patel, V., & Sundararajan, V. (2023). Applying artificial intelligence in healthcare: Lessons from the COVID-19 pandemic. International Journal of Production Research, 61(16), 5641–5654. https://doi.org/10.1080/00207543.2022.2138781

Behboudi, N., Mohammadi, R., Sadeghi-Niaraki, A., & Choi, S. M. (2024). Recent advances in traffic accident analysis and prediction: A comprehensive review. Accident Analysis & Prevention, 201, 107084. https://doi.org/10.1016/j.aap.2024.107084

Bertsimas, D., Boussioux, L., Cory-Wright, R., Digalakis, V., Kitane, D., Lukin, G., ... & Veliche, R. (2021). From predictions to prescriptions: A data-driven response to COVID-19. Health Care Management Science, 24(2), 253–272. https://doi.org/10.1007/s10729-020-09523-1

Bhalla, K., Naghavi, M., Shahraz, S., Bartels, D., & Murray, C. J. L. (2010). Under-reporting of road traffic injuries in low-income and middle-income countries: A systematic review. Injury Prevention, 16(Suppl 1), A177. https://doi.org/10.1136/ip.2010.029215.624

Botero, D. A. M., Bonfim, R., Fonseca, K., Andrade-Gonçalves, R. L. P., Monroe, A. A., & Morales, F. (2025). Artificial intelligence in Brazilian Primary Health Care: Scoping review. Revista Brasileira de Enfermagem, 78(Suppl. 3), e20240363. https://doi.org/10.1590/0034-7167-2024-0363

Cheah, B. C. J., Vicente, C. R., & Chan, K. R. (2025). Machine learning and artificial intelligence for infectious disease surveillance, diagnosis, and prognosis. Viruses, 17(7), 882. https://doi.org/10.3390/v17070882

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94

Demšar J, Curk T, Erjavec A, et al. Orange: Data mining toolbox in Python. Journal of Machine Learning Research. 2013;14:2349–2353.Disponível em: https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf.Acesso em: 12 dez. 2025.

Dourado, A., Ribeiro, J. M., & Santos, R. F. (2022). The regulation of artificial intelligence for health in Brazil. Revista de Saúde Pública, 56, 31. https://doi.org/10.11606/s1518-8787.2022056004271

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Filgueiras, F., Lui, L., & Veloso, M. T. T. (2024). A gramática institucional da proteção de dados e da privacidade no Brasil. Dados, 68(1), e20220169. https://periodicos.fgv.br/cgpc/announcement/view/323

Global Injury and Violence. (2008). Global burden of injuries and violence. World Health Organization. https://www.who.int/violence_injury_prevention/global_burden

Goodman, K. E., Shams, S. M., Magder, L. S., Baghdadi, J. D., Morgan, D. J., & Harris, A. D. (2025). Generative artificial intelligence–based surveillance for avian influenza across a statewide healthcare system. Clinical Infectious Diseases, 81(5), 900–903. https://doi.org/10.1093/cid/ciaf369

Katonai, G., Arvai, N., & Mesko, B. (2025). AI and primary care: Scoping review. Journal of Medical Internet Research, 27, e65950. https://doi.org/10.2196/65950

Ministério da Justiça e Segurança Pública. (s.d.). Mortes por causas externas: Qualificação dos registros inespecíficos. Brasília: Ministério da Justiça e Segurança Pública. Disponível em https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/mortes-por-causas-externas-qualificacao-dos-registros-inespecificos.pdf (Acesso em 12 dez. 2025).

Panteli, D., Adib, K., Buttigieg, S., Goiana-da-Silva, F., Ladewig, K., Azzopardi-Muscat, N., Figueras, J., Novillo-Ortiz, D., & McKee, M. (2025). Artificial intelligence in public health: promises, challenges, and an agenda for policy makers and public health institutions. The Lancet Public Health, 10(5), e428–e432. https://doi.org/10.1016/S2468-2667(25)00036-2

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (Free ebook). Santa Maria. Editora da UFSM.

Prado, N. M. B. L., Barreto, J. O. M., Silva, L. L. S., Santos, H. L. P. C., & Andrade, L. O. M. (2021). Ações de vigilância à saúde integradas à APS diante da COVID-19. Ciência & Saúde Coletiva, 26(7), 2843–2857. https://doi.org/10.1590/1413-81232021267.01262021

Romero Llerena, M. A., & Pandia Yañez, E. J. (2025). La inteligencia artificial en la salud pública: mejorando la atención médica y previniendo enfermedades [Artificial intelligence in public health: Improving medical care and preventing diseases]. Aula Virtual, 6(13). https://doi.org/10.5281/zenodo.17247148

Santos, A. M. R., Rodrigues, R. A. P., & Diniz, M. A. (2015). Trauma no idoso por acidente de trânsito: Revisão integrativa. Revista da Escola de Enfermagem da USP, 49(1), 162–172. https://doi.org/10.1590/S0080-623420150000100021

Sete, G., & Alemu, S. T. (2025). Distribution of causes of death and associated organ injuries in road traffic accident-related fatalities: A postmortem study in Addis Ababa, Ethiopia. BMC Public Health, 25(1), 38. https://doi.org/10.1186/s12889-024-21220-2

Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed). Editora Érica.

Tang, S. H., Dai, Z. X., Wang, W., Jiang, X., Tai, Z. Y., Wang, L. P., Zhang, Y. P., Yang, W. Z., Cao, Z. D., & Peng, Z. H. (2025). Artificial intelligence in surveillance and early warning of infectious diseases: Current status and challenges. Zhonghua Liu Xing Bing Xue Za Zhi, 46(10), 1886–1891. https://doi.org/10.3760/cma.j.cn112338-20250211-00081

Vecino-Ortiz, A. I., Nagarajan, M., Elaraby, S., Guzman-Tordecilla, D. N., Paichadze, N., & Hyder, A. A. (2022). Saving lives through road safety risk factor interventions: Global and national estimates. The Lancet, 400(10347), 237–250. https://doi.org/10.1016/S0140-6736(22)00918-7

World Health Organization. (2018). Global status report on road safety 2018. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789241565684

World Health Organization. (2021, October 29). Decade of Action for Road Safety 2021–2030 launched by WHO. United Nations Brazil. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030

World Health Organization. (2023a). Road traffic injuries: Fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

World Health Organization. (2023b). SDG target 3.6 – Road traffic injuries. World Health Organization. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-injuries

World Health Organization. (2023c). Road traffic mortality: Data and trends. Global Health Observatory (GHO) data. World Health Organization. https://www.who.int/data/gho/data/themes/topics/road-safety

Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—From local detection to global epidemic monitoring and control. In Artificial Intelligence in Medicine: Technical Basis and Clinical Applications (pp. 437–453). Academic Press. https://doi.org/10.1016/B978-0-12-821259-2.00022-3

Zeng Z, Chen PJ, Lew AA. From high-touch to high-tech: COVID-19 drives the digital transformation of intelligence and data. Tourism Geographies. 2020;22(3):724–734.DOI:10.1080/14616688.2020.1762118

Published

2026-01-30

Issue

Section

Health Sciences

How to Cite

Use of Artificial Intelligence in epidemiological data for Decision-Making in Health. Research, Society and Development, [S. l.], v. 15, n. 1, p. e8315150563, 2026. DOI: 10.33448/rsd-v15i1.50563. Disponível em: https://rsdjournal.org/rsd/article/view/50563. Acesso em: 3 feb. 2026.