Utilização de Inteligência Artificial em dados epidemiológicos para Tomada de Decisão em Saúde
DOI:
https://doi.org/10.33448/rsd-v15i1.50563Palavras-chave:
Inteligência Artificial, Epidemiologia e Bioestatística, Tomada de Decisão, Medicina Clínica, Uso da Informação Científica na Tomada de Decisões em Saúde.Resumo
Objetivo: Avaliar a viabilidade da utilização de inteligência artificial (IA), por meio do modelo ChatGPT o3 Mini High, para analisar dados epidemiológicos de mortalidade por acidentes de trânsito e propor subsídios à tomada de decisão em saúde. Metodologia: Estudo observacional, descritivo e exploratório, com dados secundários do Sistema de Informação sobre Mortalidade (SIM) e da Secretaria Estadual de Saúde de Minas Gerais, relativos a óbitos por causas externas (CID-10 V01–V99), no período de 2010 a 2024. Os dados foram tratados (limpeza, filtragem) e enriquecidos via prompts estruturados no ChatGPT o3 Mini High, permitindo cruzamentos e identificação de padrões demográficos, temporais e por tipo de acidente. Resultados: Foram analisados 219 casos de óbito por acidentes de trânsito na região de Itajubá-MG e municípios vizinhos. O algoritmo demonstrou capacidade de realizar análises descritivas, correlacionais e sugeriu intervenções como campanhas educativas segmentadas, reforço da infraestrutura viária e fiscalização direcionada. Observou-se predominância de mortes entre homens de 20 a 39 anos, sazonalidade em períodos festivos e maior incidência de colisões com motocicletas e atropelamentos. Conclusão: O uso do ChatGPT o3 Mini High mostrou-se viável como ferramenta de apoio à análise epidemiológica de mortalidade por acidentes de trânsito. Seus resultados indicam potencial para embasar políticas públicas mais assertivas. Recomenda-se ampliar o uso em outras bases regionais, validar reprodutibilidade e capacitar gestores locais para aplicação dessa tecnologia.
Referências
Andrade, L. A., Ferreira, F. A., Silva, M. R., Costa, J. D., & Oliveira, P. R. (2023). Spatiotemporal trends in deaths from external causes in Brazil, 2000–2022. PLoS ONE, 18(5), e0285472. https://doi.org/10.1371/journal.pone.0285472
Balasubramanian, S., Rao, B. S., Patel, V., & Sundararajan, V. (2023). Applying artificial intelligence in healthcare: Lessons from the COVID-19 pandemic. International Journal of Production Research, 61(16), 5641–5654. https://doi.org/10.1080/00207543.2022.2138781
Behboudi, N., Mohammadi, R., Sadeghi-Niaraki, A., & Choi, S. M. (2024). Recent advances in traffic accident analysis and prediction: A comprehensive review. Accident Analysis & Prevention, 201, 107084. https://doi.org/10.1016/j.aap.2024.107084
Bertsimas, D., Boussioux, L., Cory-Wright, R., Digalakis, V., Kitane, D., Lukin, G., ... & Veliche, R. (2021). From predictions to prescriptions: A data-driven response to COVID-19. Health Care Management Science, 24(2), 253–272. https://doi.org/10.1007/s10729-020-09523-1
Bhalla, K., Naghavi, M., Shahraz, S., Bartels, D., & Murray, C. J. L. (2010). Under-reporting of road traffic injuries in low-income and middle-income countries: A systematic review. Injury Prevention, 16(Suppl 1), A177. https://doi.org/10.1136/ip.2010.029215.624
Botero, D. A. M., Bonfim, R., Fonseca, K., Andrade-Gonçalves, R. L. P., Monroe, A. A., & Morales, F. (2025). Artificial intelligence in Brazilian Primary Health Care: Scoping review. Revista Brasileira de Enfermagem, 78(Suppl. 3), e20240363. https://doi.org/10.1590/0034-7167-2024-0363
Cheah, B. C. J., Vicente, C. R., & Chan, K. R. (2025). Machine learning and artificial intelligence for infectious disease surveillance, diagnosis, and prognosis. Viruses, 17(7), 882. https://doi.org/10.3390/v17070882
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
Demšar J, Curk T, Erjavec A, et al. Orange: Data mining toolbox in Python. Journal of Machine Learning Research. 2013;14:2349–2353.Disponível em: https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf.Acesso em: 12 dez. 2025.
Dourado, A., Ribeiro, J. M., & Santos, R. F. (2022). The regulation of artificial intelligence for health in Brazil. Revista de Saúde Pública, 56, 31. https://doi.org/10.11606/s1518-8787.2022056004271
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
Filgueiras, F., Lui, L., & Veloso, M. T. T. (2024). A gramática institucional da proteção de dados e da privacidade no Brasil. Dados, 68(1), e20220169. https://periodicos.fgv.br/cgpc/announcement/view/323
Global Injury and Violence. (2008). Global burden of injuries and violence. World Health Organization. https://www.who.int/violence_injury_prevention/global_burden
Goodman, K. E., Shams, S. M., Magder, L. S., Baghdadi, J. D., Morgan, D. J., & Harris, A. D. (2025). Generative artificial intelligence–based surveillance for avian influenza across a statewide healthcare system. Clinical Infectious Diseases, 81(5), 900–903. https://doi.org/10.1093/cid/ciaf369
Katonai, G., Arvai, N., & Mesko, B. (2025). AI and primary care: Scoping review. Journal of Medical Internet Research, 27, e65950. https://doi.org/10.2196/65950
Ministério da Justiça e Segurança Pública. (s.d.). Mortes por causas externas: Qualificação dos registros inespecíficos. Brasília: Ministério da Justiça e Segurança Pública. Disponível em https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/mortes-por-causas-externas-qualificacao-dos-registros-inespecificos.pdf (Acesso em 12 dez. 2025).
Panteli, D., Adib, K., Buttigieg, S., Goiana-da-Silva, F., Ladewig, K., Azzopardi-Muscat, N., Figueras, J., Novillo-Ortiz, D., & McKee, M. (2025). Artificial intelligence in public health: promises, challenges, and an agenda for policy makers and public health institutions. The Lancet Public Health, 10(5), e428–e432. https://doi.org/10.1016/S2468-2667(25)00036-2
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (Free ebook). Santa Maria. Editora da UFSM.
Prado, N. M. B. L., Barreto, J. O. M., Silva, L. L. S., Santos, H. L. P. C., & Andrade, L. O. M. (2021). Ações de vigilância à saúde integradas à APS diante da COVID-19. Ciência & Saúde Coletiva, 26(7), 2843–2857. https://doi.org/10.1590/1413-81232021267.01262021
Romero Llerena, M. A., & Pandia Yañez, E. J. (2025). La inteligencia artificial en la salud pública: mejorando la atención médica y previniendo enfermedades [Artificial intelligence in public health: Improving medical care and preventing diseases]. Aula Virtual, 6(13). https://doi.org/10.5281/zenodo.17247148
Santos, A. M. R., Rodrigues, R. A. P., & Diniz, M. A. (2015). Trauma no idoso por acidente de trânsito: Revisão integrativa. Revista da Escola de Enfermagem da USP, 49(1), 162–172. https://doi.org/10.1590/S0080-623420150000100021
Sete, G., & Alemu, S. T. (2025). Distribution of causes of death and associated organ injuries in road traffic accident-related fatalities: A postmortem study in Addis Ababa, Ethiopia. BMC Public Health, 25(1), 38. https://doi.org/10.1186/s12889-024-21220-2
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed). Editora Érica.
Tang, S. H., Dai, Z. X., Wang, W., Jiang, X., Tai, Z. Y., Wang, L. P., Zhang, Y. P., Yang, W. Z., Cao, Z. D., & Peng, Z. H. (2025). Artificial intelligence in surveillance and early warning of infectious diseases: Current status and challenges. Zhonghua Liu Xing Bing Xue Za Zhi, 46(10), 1886–1891. https://doi.org/10.3760/cma.j.cn112338-20250211-00081
Vecino-Ortiz, A. I., Nagarajan, M., Elaraby, S., Guzman-Tordecilla, D. N., Paichadze, N., & Hyder, A. A. (2022). Saving lives through road safety risk factor interventions: Global and national estimates. The Lancet, 400(10347), 237–250. https://doi.org/10.1016/S0140-6736(22)00918-7
World Health Organization. (2018). Global status report on road safety 2018. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789241565684
World Health Organization. (2021, October 29). Decade of Action for Road Safety 2021–2030 launched by WHO. United Nations Brazil. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030
World Health Organization. (2023a). Road traffic injuries: Fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
World Health Organization. (2023b). SDG target 3.6 – Road traffic injuries. World Health Organization. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-injuries
World Health Organization. (2023c). Road traffic mortality: Data and trends. Global Health Observatory (GHO) data. World Health Organization. https://www.who.int/data/gho/data/themes/topics/road-safety
Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—From local detection to global epidemic monitoring and control. In Artificial Intelligence in Medicine: Technical Basis and Clinical Applications (pp. 437–453). Academic Press. https://doi.org/10.1016/B978-0-12-821259-2.00022-3
Zeng Z, Chen PJ, Lew AA. From high-touch to high-tech: COVID-19 drives the digital transformation of intelligence and data. Tourism Geographies. 2020;22(3):724–734.DOI:10.1080/14616688.2020.1762118
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2026 Gerson Hiroshi Yoshinari Júnior, Henrique Ferrer Bueno, Hiago Lopes Medrado, Renato Augusto Passos, Tainara de Faria Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
