Utilización de Inteligencia Artificial en datos epidemiológicos para la Toma de Decisiones en Salud

Autores/as

DOI:

https://doi.org/10.33448/rsd-v15i1.50563

Palabras clave:

Inteligencia Artificial, Epidemiología y Bioestadística, Toma de Decisiones, Medicina Clínica, Uso de la Información Científica en la Toma de Decisiones en Salud.

Resumen

Objetivo: Evaluar la viabilidad del uso de inteligencia artificial (IA), mediante el modelo ChatGPT o3 Mini High, para analizar datos epidemiológicos de mortalidad por accidentes de tránsito y aportar al proceso de toma de decisiones en salud. Metodología: Estudio observacional, descriptivo y exploratorio, basado en datos secundarios del Sistema de Información sobre Mortalidad (SIM) y de la Secretaría de Salud del estado de Minas Gerais, referentes a muertes por causas externas (CIE-10 V01–V99) entre 2010 y 2024. Los datos fueron limpiados, filtrados y enriquecidos con prompts estructurados en el ChatGPT o3 Mini High, permitiendo cruces de variables y detección de patrones demográficos, temporales y por tipo de accidente. Resultados: Se analizaron 219 registros de muertes por accidentes de tránsito en la región de Itajubá-MG y municipios limítrofes. El modelo IA realizó análisis descriptivos y correlacionales, y propuso intervenciones como campañas educativas segmentadas, mejoras en infraestructura vial y reforzamiento de la fiscalización. Se identificó predominio de muertes en hombres de 20 a 39 años, estacionalidad en periodos festivos y mayor frecuencia de colisiones con motocicletas y atropellos. Conclusión: El uso de ChatGPT o3 Mini High resultó viable como herramienta de apoyo al análisis epidemiológico de mortalidad por accidentes de tránsito. Sus resultados muestran potencial para fundamentar políticas públicas más efectivas. Se recomienda extender su aplicación a otras bases regionales, verificar su reproducibilidad y capacitar gestores locales para su utilización.

Referencias

Andrade, L. A., Ferreira, F. A., Silva, M. R., Costa, J. D., & Oliveira, P. R. (2023). Spatiotemporal trends in deaths from external causes in Brazil, 2000–2022. PLoS ONE, 18(5), e0285472. https://doi.org/10.1371/journal.pone.0285472

Balasubramanian, S., Rao, B. S., Patel, V., & Sundararajan, V. (2023). Applying artificial intelligence in healthcare: Lessons from the COVID-19 pandemic. International Journal of Production Research, 61(16), 5641–5654. https://doi.org/10.1080/00207543.2022.2138781

Behboudi, N., Mohammadi, R., Sadeghi-Niaraki, A., & Choi, S. M. (2024). Recent advances in traffic accident analysis and prediction: A comprehensive review. Accident Analysis & Prevention, 201, 107084. https://doi.org/10.1016/j.aap.2024.107084

Bertsimas, D., Boussioux, L., Cory-Wright, R., Digalakis, V., Kitane, D., Lukin, G., ... & Veliche, R. (2021). From predictions to prescriptions: A data-driven response to COVID-19. Health Care Management Science, 24(2), 253–272. https://doi.org/10.1007/s10729-020-09523-1

Bhalla, K., Naghavi, M., Shahraz, S., Bartels, D., & Murray, C. J. L. (2010). Under-reporting of road traffic injuries in low-income and middle-income countries: A systematic review. Injury Prevention, 16(Suppl 1), A177. https://doi.org/10.1136/ip.2010.029215.624

Botero, D. A. M., Bonfim, R., Fonseca, K., Andrade-Gonçalves, R. L. P., Monroe, A. A., & Morales, F. (2025). Artificial intelligence in Brazilian Primary Health Care: Scoping review. Revista Brasileira de Enfermagem, 78(Suppl. 3), e20240363. https://doi.org/10.1590/0034-7167-2024-0363

Cheah, B. C. J., Vicente, C. R., & Chan, K. R. (2025). Machine learning and artificial intelligence for infectious disease surveillance, diagnosis, and prognosis. Viruses, 17(7), 882. https://doi.org/10.3390/v17070882

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94

Demšar J, Curk T, Erjavec A, et al. Orange: Data mining toolbox in Python. Journal of Machine Learning Research. 2013;14:2349–2353.Disponível em: https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf.Acesso em: 12 dez. 2025.

Dourado, A., Ribeiro, J. M., & Santos, R. F. (2022). The regulation of artificial intelligence for health in Brazil. Revista de Saúde Pública, 56, 31. https://doi.org/10.11606/s1518-8787.2022056004271

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Filgueiras, F., Lui, L., & Veloso, M. T. T. (2024). A gramática institucional da proteção de dados e da privacidade no Brasil. Dados, 68(1), e20220169. https://periodicos.fgv.br/cgpc/announcement/view/323

Global Injury and Violence. (2008). Global burden of injuries and violence. World Health Organization. https://www.who.int/violence_injury_prevention/global_burden

Goodman, K. E., Shams, S. M., Magder, L. S., Baghdadi, J. D., Morgan, D. J., & Harris, A. D. (2025). Generative artificial intelligence–based surveillance for avian influenza across a statewide healthcare system. Clinical Infectious Diseases, 81(5), 900–903. https://doi.org/10.1093/cid/ciaf369

Katonai, G., Arvai, N., & Mesko, B. (2025). AI and primary care: Scoping review. Journal of Medical Internet Research, 27, e65950. https://doi.org/10.2196/65950

Ministério da Justiça e Segurança Pública. (s.d.). Mortes por causas externas: Qualificação dos registros inespecíficos. Brasília: Ministério da Justiça e Segurança Pública. Disponível em https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/mortes-por-causas-externas-qualificacao-dos-registros-inespecificos.pdf (Acesso em 12 dez. 2025).

Panteli, D., Adib, K., Buttigieg, S., Goiana-da-Silva, F., Ladewig, K., Azzopardi-Muscat, N., Figueras, J., Novillo-Ortiz, D., & McKee, M. (2025). Artificial intelligence in public health: promises, challenges, and an agenda for policy makers and public health institutions. The Lancet Public Health, 10(5), e428–e432. https://doi.org/10.1016/S2468-2667(25)00036-2

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (Free ebook). Santa Maria. Editora da UFSM.

Prado, N. M. B. L., Barreto, J. O. M., Silva, L. L. S., Santos, H. L. P. C., & Andrade, L. O. M. (2021). Ações de vigilância à saúde integradas à APS diante da COVID-19. Ciência & Saúde Coletiva, 26(7), 2843–2857. https://doi.org/10.1590/1413-81232021267.01262021

Romero Llerena, M. A., & Pandia Yañez, E. J. (2025). La inteligencia artificial en la salud pública: mejorando la atención médica y previniendo enfermedades [Artificial intelligence in public health: Improving medical care and preventing diseases]. Aula Virtual, 6(13). https://doi.org/10.5281/zenodo.17247148

Santos, A. M. R., Rodrigues, R. A. P., & Diniz, M. A. (2015). Trauma no idoso por acidente de trânsito: Revisão integrativa. Revista da Escola de Enfermagem da USP, 49(1), 162–172. https://doi.org/10.1590/S0080-623420150000100021

Sete, G., & Alemu, S. T. (2025). Distribution of causes of death and associated organ injuries in road traffic accident-related fatalities: A postmortem study in Addis Ababa, Ethiopia. BMC Public Health, 25(1), 38. https://doi.org/10.1186/s12889-024-21220-2

Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed). Editora Érica.

Tang, S. H., Dai, Z. X., Wang, W., Jiang, X., Tai, Z. Y., Wang, L. P., Zhang, Y. P., Yang, W. Z., Cao, Z. D., & Peng, Z. H. (2025). Artificial intelligence in surveillance and early warning of infectious diseases: Current status and challenges. Zhonghua Liu Xing Bing Xue Za Zhi, 46(10), 1886–1891. https://doi.org/10.3760/cma.j.cn112338-20250211-00081

Vecino-Ortiz, A. I., Nagarajan, M., Elaraby, S., Guzman-Tordecilla, D. N., Paichadze, N., & Hyder, A. A. (2022). Saving lives through road safety risk factor interventions: Global and national estimates. The Lancet, 400(10347), 237–250. https://doi.org/10.1016/S0140-6736(22)00918-7

World Health Organization. (2018). Global status report on road safety 2018. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789241565684

World Health Organization. (2021, October 29). Decade of Action for Road Safety 2021–2030 launched by WHO. United Nations Brazil. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/decade-of-action-for-road-safety-2021-2030

World Health Organization. (2023a). Road traffic injuries: Fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

World Health Organization. (2023b). SDG target 3.6 – Road traffic injuries. World Health Organization. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/road-traffic-injuries

World Health Organization. (2023c). Road traffic mortality: Data and trends. Global Health Observatory (GHO) data. World Health Organization. https://www.who.int/data/gho/data/themes/topics/road-safety

Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—From local detection to global epidemic monitoring and control. In Artificial Intelligence in Medicine: Technical Basis and Clinical Applications (pp. 437–453). Academic Press. https://doi.org/10.1016/B978-0-12-821259-2.00022-3

Zeng Z, Chen PJ, Lew AA. From high-touch to high-tech: COVID-19 drives the digital transformation of intelligence and data. Tourism Geographies. 2020;22(3):724–734.DOI:10.1080/14616688.2020.1762118

Publicado

2026-01-30

Número

Sección

Ciencias de la salud

Cómo citar

Utilización de Inteligencia Artificial en datos epidemiológicos para la Toma de Decisiones en Salud. Research, Society and Development, [S. l.], v. 15, n. 1, p. e8315150563, 2026. DOI: 10.33448/rsd-v15i1.50563. Disponível em: https://rsdjournal.org/rsd/article/view/50563. Acesso em: 3 feb. 2026.