Ovariectomized hypertensive rats submitted to exercise and estrogen therapy present improved levels of angiotensin receptors in the aorta
DOI:
https://doi.org/10.33448/rsd-v14i12.50241Keywords:
Renin-angiotensin system (RAS), Endothelial nitric oxide synthase (eNOS), Superoxide Dismutase 2 (SOD 2).Abstract
The renin-angiotensin system (RAS) and the antioxidant system play integral and interconnected roles in finely regulating cardiovascular function during exercise training and estrogen level alterations. This study aimed to investigate whether training modulates RAAS receptors and antioxidant proteins in a manner similar to 17β-estradiol (E2) therapy in the aorta of ovariectomized spontaneously hypertensive rats (SHR). Animals were divided into Sham (SH), Ovariectomized (OVX), OVX+ET (OE2), OVX+swimming (OSW) and OVX+ET+swimming (OE2+SW) groups. ET entailed the administration of 5 µg 17β-estradiol three times per week. Swimming was performed for one hour/day, five times per week. Two days after the last treatment and/or training session, systolic blood pressure was assessed. Protein content from isolated aorta was analyzed by western blot for the RAS receptors (angiotensin AT1-receptor - AT1R, angiotensin AT2-receptor - AT2R, and Mas receptor - Mas), endothelial nitric oxide synthase (eNOS), total and phosphorylated Protein Kinase B at Ser473 (p-AktSer473), Superoxide Dismutase 2 (SOD 2) and ß-actin. The results showed that AT1R was increased only in the OVX group, while angiotensin AT2R and Mas increased in both OSW and OE2+SW. In addition, ET therapy increased both eNOS and SOD 2 levels in SH, OE2 and OE2+SW. Interestingly, p-AktSer473 levels increased similarly in the same groups observed for eNOS. This study provided mechanistic evidence suggesting that both physical and hormonal interventions act via the protective RAS by stimulating the p-AktSer473-eNOS and SOD 2 pathways, which can be associated with vasodilation and potential antioxidant capacity in estrogen deficiency conditions.
References
Barton, M. & Meyer, M. R. (2009). Postmenopausal hypertension: mechanisms and therapy. Hypertension (Dallas, Tex : 1979). 54: 11-18. doi:10.1161/hypertensionaha.108.120022. https://www.ahajournals.org/doi/full/10.1161/hypertensionaha.108.120022
Boardman, H. M., Hartley, L., Eisinga, A. et al. (2015). Hormone therapy for preventing cardiovascular disease in postmenopausal women. The Cochrane database of systematic reviews. doi:10.1002/14651858.CD002229.pub4. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD002229.pub4/full
Buñag, R. D. (1973). Validation in awake rats of a tail-cuff method for measuring systolic pressure. Journal of applied physiology. 34: 279-82. doi:10.1152/jappl.1973.34.2.279. https://journals.physiology.org/doi/abs/10.1152/jappl.1973.34.2.279
Burt, V. L., Whelton, P., Roccella, E. J. et al. (1979). Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension (Dallas, Tex). 25: 305-13. doi:10.1161/01.hyp.25.3.305. https://www.ahajournals.org/doi/full/10.1161/01.hyp.25.3.305
Caulin-Glaser, T., García-Cardeña, G., Sarrel, P. et al. (1997). 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circulation research 1997; 81: 885-892. doi:10.1161/01.res.81.5.885. https://www.ahajournals.org/doi/10.1161/01.RES.81.5.885
Chen, Y., Jin, X., Zeng, Z. et al. (2009). Estrogen-replacement therapy promotes angiogenesis after acute myocardial infarction by enhancing SDF-1 and estrogen receptor expression. Microvascular research. 77: 71-7. doi:10.1016/j.mvr.2008.10.003. https://www.sciencedirect.com/science/article/abs/pii/S0026286208001860
Claudio, E. R., Almeida, S. A, Mengal, V. et al. (2017). Swimming training prevents coronary endothelial dysfunction in ovariectomized spontaneously hypertensive rats. Brazilian journal of medical and biological research 50: e5495. doi:10.1590/1414-431x20165495. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264533/
Claudio, E. R., Endlich, P. W., Santos, R. L. et al. (2013). Effects of chronic swimming training and oestrogen therapy on coronary vascular reactivity and expression of antioxidant enzymes in ovariectomized rats. PloS one. 8: e64806. doi:10.1371/journal.pone.0064806. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064806
Coimbra, R., Sanchez, L. S., Potenza, J. M. et al. (2008). Is gender crucial for cardiovascular adjustments induced by exercise training in female spontaneously hypertensive rats? Hypertension (Dallas, Tex : 1979). 52: 514-21. https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.108.114744
Costa Neto, P. L. O. & Bekman, O. R. (2009). Análise estatística da decisão. Editora Edgard Blucher.
Dalpiaz, P. L., Lamas, A. Z., Caliman, I. F. et al. (2013). The chronic blockade of angiotensin I-converting enzyme eliminates the sex differences of serum cytokine levels of spontaneously hypertensive rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 46: 171-7. doi:10.1590/1414-431x20122472. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854361/
de Almeida SA, Claudio ERG, Mengal V et al. Estrogen Therapy Worsens Cardiac Function and Remodeling and Reverses the Effects of Exercise Training After Myocardial Infarction in Ovariectomized Female Rats. Frontiers in physiology 2018; 9: 1242. doi:10.3389/fphys.2018.01242. https://www.frontiersin.org/articles/10.3389/fphys.2018.01242/full
Endlich, P. W., Claudio, E. R., Lima, L. C. et al. (2017). Exercise modulates the aortic renin-angiotensin system independently of estrogen therapy in ovariectomized hypertensive rats. Peptides. 87: 41-9. doi:10.1016/j.peptides.2016.11.010. https://www.sciencedirect.com/science/article/abs/pii/S0196978116302280
Endlich, P. W., Firmes, L. B., Gonçalves, W. L. et al. (2011). Involvement of the atrial natriuretic peptide in the reduction of arterial pressure induced by swimming but not by running training in hypertensive rats. Peptides. 32: 1706-1712. doi:10.1016/j.peptides.2011.06.027. https://www.sciencedirect.com/science/article/abs/pii/S0196978111002580
Filho, A. G., Ferreira, A. J., Santos, S. H. et al. (2008). Selective increase of Angiotensin (1-7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Experimental physiology. 93: 589-98. doi:10.1113/expphysiol.2007.014293. https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/expphysiol.2007.014293
Gersh, F. L., O'Keefe, J. H., Lavie, C. J. & Henry, B. M. (2021). The Renin-Angiotensin-Aldosterone System in Postmenopausal Women: The Promise of Hormone Therapy. Mayo Clin Proc. 96(12):3130-3141. doi: 10.1016/j.mayocp.2021.08.009. https://www.mayoclinicproceedings.org/article/S0025-6196(21)00802-8/fulltext
Hannan, R. E., Davis, E. A. & Widdop, R. E. (2003) Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: involvement of bradykinin and nitric oxide. British journal of pharmacology. 140: 987-95. doi:10.1038/sj.bjp.0705484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574089/
Hernández, I., Delgado, J. L., Díaz, J. et al. (2000). 17beta-estradiol prevents oxidative stress and decreases blood pressure in ovariectomized rats. American journal of physiology Regulatory, integrative and comparative physiology. 279: R1599-1605. doi:10.1152/ajpregu.2000.279.5.R1599. https://journals.physiology.org/doi/full/10.1152/ajpregu.2000.279.5.R1599
Higashi, Y., Sasaki, S., Sasaki, N. et al. (1999). Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension. Hypertension (Dallas, Tex : 1979). 33: 591-597. doi:10.1161/01.hyp.33.1.591. https://www.ahajournals.org/doi/full/10.1161/01.hyp.33.1.591
Hinojosa-Laborde, C., Craig, T., Zheng, W. et al. (2004). Ovariectomy augments hypertension in aging female Dahl salt-sensitive rats. Hypertension (Dallas, Tex : 1979). 44: 405-409. doi:10.1161/01.Hyp.0000142893.08655.96. https://www.ahajournals.org/doi/10.1161/01.HYP.0000142893.08655.96
Kuo-Hui, S., Jin-Yi, T., Yu, R. K., An-Na, C., Sheng-Huang, H., Yuh-Lin, W., Hsin-Han, H., Ching-Chian, P., Song-Kun, S., Tzong-Shyuan, L. (2009). Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling, Cardiovascular Research. 82(Issue 3), 468–75. https://doi.org/10.1093/cvr/cvp091. https://academic.oup.com/cardiovascres/article/82/3/468/476303
Lantin-Hermoso, R. L., Rosenfeld, C. R., Yuhanna, I. S. et al. (1997).Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium. The American journal of physiology. 273: L119-126. doi:10.1152/ajplung.1997.273.1.L119. https://journals.physiology.org/doi/10.1152/ajplung.1997.273.1.L119
Manson, J. E. & Bassuk, S. S. (2018). Menopause and Postmenopausal Hormone Therapy. In: Jameson, J. L., Fauci, A. S., Kasper, D. L. et al., Eds. Harrison's Principles of Internal Medicine, (20e). New York, NY: McGraw-Hill Education. https://accessmedicine.mhmedical.com/content.aspx?bookid=2129§ionid=192287890
Marques, C. M., Nascimento, F. A., Mandarim-de-Lacerda, C. A. et al. (2006). Exercise training attenuates cardiovascular adverse remodeling in adult ovariectomized spontaneously hypertensive rats. Menopause (New York, NY).13: 87-95. doi:10.1097/01.gme.0000191209.13115.46. https://journals.lww.com/menopausejournal/fulltext/2006/13010/exercise_training_attenuates_cardiovascular.15.aspx
Martin, K. A. & Manson, J. E. (2008) Approach to the patient with menopausal symptoms. The Journal of clinical endocrinology and metabolism. 93: 4567-75. doi:10.1210/jc.2008-1272. https://academic.oup.com/jcem/article/93/12/4567/2627244
Nabulsi, A. A. & Folsom, A. R. (1993). White A et al. Association of hormone-replacement therapy with various cardiovascular risk factors in postmenopausal women. The Atherosclerosis Risk in Communities Study Investigators. The New England journal of medicine. 328: 1069-1075. doi:10.1056/nejm199304153281501. https://www.nejm.org/doi/full/10.1056/NEJM199304153281501
Nickenig, G., Bäumer, A. T., Grohè, C. et al. (1998). Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation. 97: 2197-2201. doi:10.1161/01.cir.97.22.2197. https://www.ahajournals.org/doi/10.1161/01.cir.97.22.2197
Nogawa, N., Sumino, H., Ichikawa, S. et al. (2001). Effect of long-term hormone replacement therapy on angiotensin-converting enzyme activity and bradykinin in postmenopausal women with essential hypertension and normotensive postmenopausal women. Menopause (New York, NY). 8: 210-5. doi:10.1097/00042192-200105000-00011. https://journals.lww.com/menopausejournal/Abstract/2001/08030/Effect_of_long_term_hormone_replacement_therapy_on.11.aspx
Paz Ocaranza, M., Riquelme, J. A., García, L., Jalil, J. E., Chiong, M., Santos, R. A. S. & Lavandero, S. (2020). Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 17(2):116-29. doi: 10.1038/s41569-019-0244-8. https://www.nature.com/articles/s41569-019-0244-8
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. (free ebook). Santa Maria. Editora da UFSM.
Reckelhoff, J. F., Zhang, H. & Srivastava, K. (2000). Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension (Dallas, Tex : 1979). 35: 480-483. doi:10.1161/01.hyp.35.1.480. https://www.ahajournals.org/doi/10.1161/01.HYP.35.1.480
Regitz-Zagrosek, V. & Kararigas, G. (2017). Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiological reviews. 97: 1-37. doi:10.1152/physrev.00021.2015. https://journals.physiology.org/doi/full/10.1152/physrev.00021.2015
Ritchie, H., Spooner, F. & Roser, M. (2018) - "Causes of death". Published online at OurWorldInData.org. https://ourworldindata.org/causes-of-death' [Online Resource].
Saengsirisuwan, V., Pongseeda, S., Prasannarong, M. et al. (2009). Modulation of insulin resistance in ovariectomized rats by endurance exercise training and estrogen replacement. Metabolism: clinical and experimental. 58: 38-47. doi:10.1016/j.metabol.2008.08.004. https://www.metabolismjournal.com/article/S0026-0495(08)00318-1/fulltext
Sampaio, W. O., Souza dos Santos, R. A., Faria-Silva R. et al. (2007). Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension (Dallas, Tex : 1979) 49: 185-92. doi:10.1161/01.HYP.0000251865.35728.2f. https://www.ahajournals.org/doi/full/10.1161/01.HYP.0000251865.35728.2f
Savergnini, S. Q., Ianzer, D., Carvalho, M. B., Ferreira, A. J., Silva, G. A., Marques, F. D., Peluso AA, Beiman M, Cojocaru G, Cohen Y, Almeida AP, Rotman G, Santos RA. The novel Mas agonist, CGEN-856S, attenuates isoproterenol-induced cardiac remodeling and myocardial infarction injury in rats. PLoS One. 2013;8(3):e57757. doi: 10.1371/journal.pone.0057757. Epub 2013 Mar 1. PMID: 23469229; PMCID: PMC3585977. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057757
Schunkert, H., Danser, A. H., Hense, H. W. et al. (1997). Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation 1997; 95: 39-45. doi:10.1161/01.cir.95.1.39. https://www.ahajournals.org/doi/full/10.1161/01.cir.95.1.39
Shah, A., Oh, Y. B., Lee, S. H. et al. (2012). Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats. American journal of physiology Heart and circulatory physiology. 302: H2372-2380. doi:10.1152/ajpheart.00846.2011. https://journals.physiology.org/doi/full/10.1152/ajpheart.00846.2011
Shitsuka, R. et al. (2014). Matemática fundamental para a tecnologia. (2ed). Editora Érica.
Silva, D. M., Gomes-Filho, A., Olivon, V. C. et al. (2011). Swimming training improves the vasodilator effect of Angiotensin-(1-7) in the aorta of spontaneously hypertensive rat. Journal of applied physiology (Bethesda, Md : 1985). 111: 1272-1277. doi:10.1152/japplphysiol.00034.2011. https://journals.physiology.org/doi/full/10.1152/japplphysiol.00034.2011
Silva, F. B., Romero, W. G., Rouver, W. D. N. et al. (2022). Ellagic Acid prevents vascular dysfunction in small mesenteric arteries of ovariectomized hypertensive rats. The Journal of nutritional biochemistry. 105: 108995. doi:10.1016/j.jnutbio.2022.108995. https://www.sciencedirect.com/science/article/pii/S0955286322001000
Siragy, H. M. & Carey, R. M. (1997). The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. The Journal of clinical investigation. 100: 264-9. doi:10.1172/jci119531. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC508188/
Wang, Y., Branicky, R., Noë, A. et al. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. The Journal of cell biology. 217: 1915-28. doi:10.1083/jcb.201708007. https://rupress.org/jcb/article/217/6/1915/39308/Superoxide-dismutases-Dual-roles-in-controlling
Wassmann, S., Bäumer, A. T., Strehlow, K. et al. (2001). Endothelial dysfunction and oxidative stress during estrogen deficiency in spontaneously hypertensive rats. Circulation. 103: 435-41. doi:10.1161/01.cir.103.3.435. https://www.ahajournals.org/doi/full/10.1161/01.cir.103.3.435
Wenger, N. K., Speroff, L. & Packard, B. (1993). Cardiovascular health and disease in women. The New England journal of 1993; 329: 247-256. doi:10.1056/nejm199307223290406. https://www.nejm.org/doi/full/10.1056/NEJM199307223290406
Zarrow, M. X. (2012). Experimental endocrinology ; a sourcebook of basic techniques: Academic Press. https://books.google.com/books/about/Experimental_Endocrinology_A_Sourcebook.html?id=_0UhcgAACAAJ
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Patrick Wander Endlich, Simone Alves de Almeida Simões, Leandro Ceotto Freitas Lima, Augusto Peluso, Robson Augusto Souza Santos, Glaucia Rodrigues de Abreu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
