Cancer and Cachexia: influence of a therapeutic exercise protocol on the health and disease process




Cancer; Cachexia; Resistance exercises.


Cancer is a clinical condition resulting from disordered cell proliferation, and has its association with cachexia, in part of the cases, this condition ends up worsening the patient's condition, due to the intense depletion of lean mass and adipose tissue, which causes immunological changes that compromise the effectiveness of drug therapy. Objective: This study aimed to evaluate the therapeutic effects of the application of resistance exercises of moderate intensity in cachectic patients with cancer of the gastrointestinal tract. Methodology: 20 healthy and sedentary individuals were selected for the control group, with an age range similar to the test group, which consisted of 20 cancer patients with gastrointestinal cancer, associated with cachexia, and the evaluations were performed with the following instruments: load cell, nutritional analysis of the menu, total energy value (VET), basal metabolic rate (BMR). The menu and motor control were evaluated before and after the resistance exercise protocol, compared to a group of normal people without association with the pathology and after the exercise protocol, the group of patients demonstrated an increase and strength control that approached the healthy group, being statistically significant Results: Some patients did not have the adequate caloric intake both when comparing the basal metabolic rate and when adding an exercise practice, visualized through the calculation of the total energy value, about the strength assessment, there was a significant improvement between the first and second evaluation, although the protocol time was not enough for lean mass production. Conclusion: The results found suggest that this treatment should be applied for longer than the one developed to assess whether the caloric intake was adequate, and if the proposed protocol would be effective for the production of muscle mass in these patients who have severe catabolic processes, evaluating the biological individuality of each patient, thus meeting the metabolic needs.


Argilés, J. M. (2005). Cancer-associated malnutrition. Eur J Oncol Nurs, 9 Suppl 2, S39-50. doi:10.1016 / j.ejon.2005.09.006.

Brown, L., Guzman, S., Brooks, S. (2020). Emerging molecular mediators and targets for age-related skeletal muscle atrophy, Translational Research, 221, 44-57,

Coma, M., Vicente, R., Busquets, S., Carbó, N., Tamkun, M., López-Soriano, F., Argilés, J., Felipe, A. (2003). Impaired voltage-gated K+ channel expression in brain during experimental cancer cachexia. FEBS letters, 536:45-50. doi:10.1016/S0014-5793(03)00009-7.

Dirks, A. J., Leeuwenburgh, C. (2006). Tumor necrosis factor α signaling in skeletal muscle: effects of age and caloric restriction .The Journal of Nutritional Biochemistry, 17, 501-508. doi:10.1016 / j.jnutbio.2005.11.002.

Fearon, K. C. H. (2008). Cancer cachexia: Developing multimodal therapy for a multidimensional problem. Eur J Cancer. 2008; 44(8), 1124-32. doi:10.1016 / j.ejca.2008.02.033.

Fernandes, L., Tobias, G., Paixão, A., Dourado, P., Voltarelli, V., Brum, P. (2020). Exercise training delays cardiac remodeling in a mouse model of cancer cachexia, Life Sciences, 260: 118392.

Haugen, H., Chan, L., Li, F. (2007). Indirect Calorimetry: A practical Guide for clinicians, Nutrition in Clinical Practice, 22(4), 377-388.

Khamoui, A., Park, B., Kim, D., Yeh, M., Oh, S., Elam, M., Jo, E., Arjmandi, B., Salazar, G., Grant, S., Contreras, R., Lee, W., Kim, J. (2016). Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia, Metabolism, 65(5), 685-698.

Krieger, C., Jones, K., Kim, S., Eisen, A. (2003). The role of intracellular free calcium in motor neuron disease. Journal of the Neurological Sciences, 124, 27-32. doi:10.1016 / 0022-510x (94) 90173-2.

Marzetti, E., Lawler, J. M., Hiona, A., Manini, T., Seo, A. Y., Leeuwenburgh, C. (2008). Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radical Biology and Medicine, 44, 160-168. doi: 10.1016 / j.freeradbiomed.2007.05.028.

Mei, X., Wang, J., Mei-Sheng, J., Zhang, H., Zhang, Z. (2011). Role of intracellular calcium dynamics in the short-term memory in CVM model: A simulation study. Computers in Biology and Medicine, 41, 206-210. doi: 10.1007 / BF02895807.

Molinari, L., Schwarz, K., Moura, P., Silva, T. (2017). Avaliação do cardápio das dietas especiais de uma uan hospitalar. Visão Acadêmica, Curitiba, 18(4), 1518-8361. doi: 10.5380/acd.v18i4.55849.

Mota, D. D. C. F., Pimenta, C. A. M. (2020). Fadiga em Pacientes com Câncer Avançado: Avaliação e Intervenção. Revista Brasileira de Cancerologia. 48(4), 2002. Recuperado de:

Mulder, S., Dasgupta, A., King, R., Abrego, J., Murthy, K., Shukla, S., Singh, P. (2020). JNK signaling contributes to skeletal muscle wasting and protein turnover in pancreatic cancer cachexia, Cancer Letters, 491, 70-77.

Pasternak, J. J. (2002). Genética Molecular Humana. Mecanismos de Doenças hereditárias. Manole 365-412. Recuperado de: 84/48473/MONOGRAFIA%20MARCELO%20KRYCZYK.pdf?sequence=1&isAllowed=y

Padrão A, Nogueira-Ferreira R, Vitorino R, Carvalho D, Correia C, Neuparth M, Pires M, Faustino-Rocha A, Santos L, Oliveira P, Duarte J, Moreira-Gonçalves D., Ferreira R. (2018) Exercise training protects against câncer-induced cardiac remodeling in na animal modelo f urothelial carcinoma. Arch. Biochem Biophys, 645, 12-18. 10.1016/

Salomão E. M. (2005). Atividade Física Associada ao Crescimento Tumoral e Suplementação Nutricional: Estudo em Ratos Jovens Portadores do Carcinossoma de Walker 256. Dissertação (Mestrado) Universidade de Campinas-Unicamp, 2005. Recuperado de:

Shukla, S., Markov, S., Attri, K., Vernucci, E., King, R., Gasgupta, A., Grandgenett, P., Hollingsworth, M., Singh, P., Yu, F., Mehla, K. (2020). Os macrófagos potencializam a sinalização de STAT3 nos músculos esqueléticos e regulam a caquexia do câncer pancreático. Can. Lett, 484, 29-39.

Silva, M. P. N. (2005). Síndrome da anorexia-caquexia em portadores de câncer. Revista Brasileira de Cancerologia 2005; 52(1), 59-77. Recuperado de r/site/arquivos/n_52/v01/pdf/revisao3.pdf

Sturman, M. M., Vaillancourt, D. E., Corcos, D. M. (2005). Effects of aging on the regularity of physiological tremor. Journal of Neurophysiology, 93, 3064-3074. doi:10.1152/jn.01218.2004.

Sun, H., Sudip, T., Fu, X., et al. (2020). Cachexia is associated with depression, anxiety and quality of life in cancer patients BMJ Supportive & Palliative Care Published Online. doi: 10.1136/bmjspcare-2019-002176

Tisdale, M. J. (2000). Protein loss in cancer cachexia. Science. 289, 2293-2295. doi:10.1126/science.289.5488.2293.

Tobberup, R., Carus, A., Rasmussen, H., Falkmer, U., Jorgensen, M., Schmidt, E., Jensen, N., Mark, E., Delekta, A., Antoniussen, C., Bøgsted, M., Holst, M. (2020) Feasibility of a multimodal intervention on malnutrition in patients with lung cancer during primary anti-neoplastic treatment, Clinical Nutrition,

Vaillancourt, D., Slifkin, A. B., Newell, K. M. (2001). Regularity of force tremor in Parkinson's disease. Clinical Neurophysiology, 112, 1594-1603. doi:10.1016/s1388-2457 (01)00593-4.

Zhang, H., Sillar, K. (2012). Short-Term Memory of Motor Network Performance via Activity-Dependent Potentiation of Na+/K+ Pump Function. Current Biology, 22, 526-531. doi:10.1016/j.cub.2012.01.058.

Zhipeng, C. A. O., Irvin, J., Jason, G., Hamsa, P., Laura, D. O., Nick, J. H. (2020). Generation of reporter cell lines for factors inducing muscle wasting in cancer cachexia, Analytical Biochemistry, 606, 113877. doi:10.1016/j.ab.2020.113877.



How to Cite

Valentim, L. de A., Souza, C. R. de ., & Quaresma, T. C. . (2020). Cancer and Cachexia: influence of a therapeutic exercise protocol on the health and disease process. Research, Society and Development, 9(11), e36091110008.



Health Sciences