Tools for predictive maintenance of diesel engines: a systematic bibliographic review
DOI:
https://doi.org/10.33448/rsd-v9i11.10195Keywords:
Predictive Maintenance; Diesel engines; Systematic literature review.Abstract
The fleet maintenance sector represents a large part of the costs in agro-industrial properties and all the innovation and technology used to reduce these costs directly impacts the final price of the product. Given this context, the objective of this article is to identify how the state of knowledge about predictive maintenance tools for diesel engines is configured. To meet the objective, a systematic bibliographic review was used, consisting of three phases: Input, Processing and Output. It was possible to identify an advance in scientific production related to predictive maintenance tools, which reinforces its importance. When analyzing the documents in full, it was possible to categorize the documents by applicability, being: Industrial; Diesel Engines; 2T Diesel Engines; Diesel Engines for Agricultural Tractors; Engines and Mechanical equipment; Bus and Passenger Transport; Mining and Maritime. It was also possible to conclude that the sectors that research and develop the most predictive maintenance tools for engines are industrial and marine. Of the 41 documents analyzed in this research, eight are book chapters, which demonstrates that the analysis of such a documentary format is relevant to the theme addressed here. Likewise, research on predictive maintenance has been gaining importance in recent years, which leads us to believe that it must also move towards the agricultural sector.
References
Abdul-Munaim, A. M., Reuter, M., Abdulmunem, O. M., Balzer, J. C., Koch, M. & Watson, D. G. (2016). Using terahertz time-domain spectroscopy to discriminate among water contamination levels in diesel engine oil. Transactions of the ASABE. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan. 59 (3) 795-801. doi.org/10.13031/trans.59.11448.801.
Alvarez, I. & Huet, S. (2008). Automatic diagnosis of engine of agricultural tractors: The BED experiment. Biosystems Engineering, 100 (1) 362-369. doi.org/10.1016/j.biosystemseng.2008.04.003.
Bin, Z., Jun, Y. & Cheng, T. (2008). Study on fault diagnosis system of diesel engine fuel injection system based on BP neural network. International Colloquium on Computing, Communication, Control, and Management, CCCM 2008, (2) 108-112. doi.org/10.1109/CCCM.2008.33.
Biolchini, J. C. A., Mian, P. G., Natali, A. C. C., Conte, T. U. & Travassos, G. H. (2007). Scientific research ontology to support systematic review in software engineering. Advanced Engineering Informatics, 21(2) 133-151. doi.org/10.1016/j.aei.2006.11.006.
Bloch, H. P. & Geitner, F. K. (1999). Chapter 7 - Statistical Approaches in Machinery Problem Solving. In: Practical Machinery Management for Process Plants. Gulf Professional Publishing, 2 (1) 477-522. doi.org/10.1016/S18746942(99)80009-1.
Boullosa-Falces, D., Barrena, J. L. L., Lopez-Arraiza, A., Menendez, J. & Solaetxe, M. A. G. (2017). Monitoring of fuel oil process of marine diesel engine. Applied Thermal Engineering, 127 (1) 517-526. doi.org/10.1016/j.applthermale.2017.08.036
Conforto, E. C., Amaral, D. C. & Silva, S. L. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projeto. VIII Congresso Brasileiro de Gestão de Desenvolvimento de Produto. Porto Alegre/RS.
Cruz-Peragón, F., Palomar, J.M., Díaz, F.A. & Jiménez-Espadafor, F.J. (2009). Practical identification of non-linear characteristics of elastomeric couplings in engine assemblies. Mechanical Systems and Signal Processing, 23 (1) 922-930. doi.org/10.1016/j.ymssp.2008.08.007.
Diez-olivan, A., Pagan, J. A., Sanz, R. & Sierra, B. (2017). Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF based score. Neurocomputing, 241(1) 97-107. doi.or/10.1016/j.neucom.02.024.
Engineered Machined Products Inc. (2000). A breakthrough in vehicle cooling system pumps design. World Pumps, 2000 (1) 42-44. doi.org/10.1016/S0262-1762(00)88913-0.
García, M.O., Ordóñez, C.G. & Torregrosa, A.J. (2016). Noise analysis in the design and construction of a semianechoic chamber for the diagnosis of internal combustion engines. Informacion Tecnologica, 27(1) 121-132. doi.org/10.4067/S071807642016000500014.
Geitner, F. K. & Bloch, H. P. (2006). Chapter 4 - Estimating machinery uptime. In: Practical Machinery Management for Process Plants. Gulf Professional Publishing, 5(1) 45-77.
Girdhar, P.& Scheffer, C. (2004). Chapter 1 - Predictive maintenance techniques: Part 1 predictive maintenance basics. In: Practical Machinery Vibration Analysis and Predictive Maintenance. Newnes, 1-10.
Gomes, H.M. & Silva, N.R.S. (2008). Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method. Applied Mathematical Modelling, 32(1) 2216-2232. doi.org/10.1016/j.apm.2007.07.002.
Goodman, D. Sorj, B. & Wilkinson, J. (2008). Da lavoura às biotecnologias: agricultura e indústria no sistema internacional. Rio de Janeiro: Centro Edelstein de Pesquisas Sociais. A apropriação industrial do processo de produção rural. 6-49. ISBN: 978-85-9966-229-8.
Huang, M., Liu, Z. & Tao, Y. (2019). Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. Simulation Modelling Practice and Theory. doi.org/10.1016/j.simpat.2019.101981.
Isa, M.C., Yusoff, N.H.N., Nain, H., Yati, M. S. D., Muhammad, M.M.& Nor, I. M. (2013). Ferrographic Analysis of Wear Particles of Various Machinery Systems of a Commercial Marine Ship. Procedia Engineering, 68(1) 345-351. doi.org/10.1016/j.proeng.2013.12.190.
Jacto. (2020). Entenda a mecanização da agricultura e conheça 4 vantagens. Sitio eletrônico. Recuperado de https://blog.jacto.com.br/entenda-a-mecanizacao-da-agricultura-e-conheca-4-vantagens/
Kardec, A. & Nascif J. (2009). Manutenção: função estratégica. 3.ed. Rio de Janeiro: Qualitymark: Petrobrás.
Köche, J. C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Petrópolis, RJ: Vozes.
Kumar, A. & Ghosh, S. K. (2019). Size distribution analysis of wear debris generated in HEMM engine oil for reliability assessment: A statistical approach. Measurement, 131(1) 412-418. doi.org/10.1016/j.measurement.2018.09.012.
Kumar, A., Shankar, R. & Thakur, L. S. (2018). A big data driven sustainable manufacturing framework for condition-based maintenance prediction. Journal of Computational Science, 27(1) 428-439. doi.org/10.1016/j.jocs.2017.06.006.
Lazakis, I., Raptodimos, Y. & Varelas, T. (2018). Predicting ship machinery system condition through analytical reliability tools and artificial neural networks. Ocean Engineering, 152(1) p. 404-415. doi.org/10.1016/j.oceaneng.2017.11.017.
Lazakis, I., Dikis, K., Michala, A. L.& Theotokatos, G. (2016). Advanced Ship Systems Condition Monitoring for Enhanced Inspection, Maintenance and Decision Making in Ship Operations. Transportation Research Procedia, 14(1) 1679-1688. doi.org/10.1016/j.trpro.2016.05.133.
Lazzerini, F. T. & Bonotto, D. M. (2014). O silício em águas subterrâneas do Brasil.
Ciência e Natura, 36(2) 159–168. doi.org/10.5902/2179460X13135.
Lee, J., Kao, H. & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP, 16(1), p. 3-8. doi.org/10.1016/j.procir.2014.02.001.
Li, Z., Jiang, Y., Duan, Z. & Peng, Z. (2018). A new swarm intelligence optimized multiclass multi-kernel relevant vector machine: An experimental analysis in failure diagnostics of diesel. Structural Health Monitoring, 17(1) 1503-1519. doi.org/10.1177/1475921717746735.
Ludke, M. & Andre, M. E . D. A. (2013). Pesquisas em educação: uma abordagem qualitativa. São Paulo: E.P.U. F.
Macian, V., Payri, R., Tormos, B. & Montoro, L. (2006). Applying analytical ferrography as a technique to detect failures in Diesel engine fuel injection systems. Wear. 260(1) 562-566. doi.org/10.1016/j.wear.2005.03.019.
Magro, T. V. & Cavichioli, F. A. (2018). Uso de implementos agrícolas: vantagens e desvantagens. SIMTEC. Simpósio de Tecnologia da Fatec de Taquaritinga. 4(1)1-13.
Marion, C. (2014). Mecanização agrícola transforma perfil do gestor. Revista Máquinas Agrícolas & Inovações.
Mobley, R. K. (2001). 43 - Vibration Fundamentals. In: Plant Engineer's Handbook. Butterworth-Heinemann. doi.org/10.1016/B978-075067328-0/50045-8.
Mobley, R. K. (1999). Chapter 2 - Vibration Analysis Applications. In: Vibration
Fundamentals. Newnes, 3-5. doi.org/10.1016/B978-075067150-7/50038-0.
Mobley, R. K. (2002). 9 – Tribology: An Introduction to Predictive Maintenance. In: Plant Engineering, Butterworth-Heinemann, 2. ed. doi.org/10.1016/B978075067531-4/50009-9.
Moore, R. (2007). 13 - Predictive maintenance/ condition monitoring. In: Selecting the Right Manufacturing Improvement Tools. Butterworth-Heinemann. doi.org/10.1016/B978-075067916-9/50014-X.
Nahim, H. M., Younes, R., Shraim, H. & Ouladsine, M. (2016). Modeling with Fault Integration of the Cooling and the Lubricating Systems in Marine Diesel Engine:
Experimental validation. IFAC, 49(1) 570-575. doi.org/10.1016/j.ifacol.2016.08.083.
Nasiri, A., Taheri-Garavand, A., Omid, M. & Carlomagno, G. M. (2019). Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images, Applied Thermal Engineering, 163(1). doi.org/10.1016/j.applthermaleng.2019.114410.
Nixon, S., Weichel, R., Reichard, K. & Kozlowski, J. (2018). A machine learning approach to diesel engine health prognostics using engine controller data. Proceedings of the Annual Conference of the Prognostics and Health Management Society.
Olver, A.V. (2002). Gear lubrication – a review. Journal of Engineering Tribology. 216(1) 255-267. doi.org/10.1243/135065002760364804.
Oliveira; F. C. M., Lago, D. M., Oliveira Filho, M. F. & Medeiros, J. T. N. M. (2018). A new stochastic model for particulate matter and debris emitted by diesel engines. 6th International Conference Integrity-Reliability-Failure Lisbon/Portugal.
Pacheco, E.P. (2000). Seleção e custo operacional de máquinas agrícolas. Rio Branco: Embrapa Acre, (Embrapa Acre. Documentos, 58).
Patocka, F., Schlögl, M., Schneidhofer, C.; Dörr, N., Schneider, M. & Schmid, U. (2019). Piezoelectrically excited MEMS sensor with integrated planar coil for the detection of ferrous particles in liquids. Sensors and Actuators B: Chemical, 299(1) 126957. doi.org/10.1016/j.snb.2019.126957.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE.
Raposo, H.; Farinha, J.T.; Fonseca, I.; Ferreira, L.A. (2019). Condition monitoring with prediction based on diesel engine oil analysis: A case study for urban buses. MDPI, v.8, doi.org/10.3390/act8010014.
Raposo, H., Farinha, J. T. & Fonseca, I.; Galar, D. (2019). Predicting condition based on oil analysis – A case study. Tribology International, 135(1) 65-74. doi.org/10.1016/j.triboint.2019.01.041.
Rubio, J. A. P., Vera-García, F. Grau, J. H., Cámara, J. M. & Hernandez, D. A. (2018). Marine diesel engine failure simulator based on thermodynamic model. Applied Thermal Engineering, 144(1) 982-995. doi.org/10.1016/j.applthermaleng.2018.08.096.
Sampaio, R. F. & Mancini, M. C. (2007). Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Revista Brasileira de Fisioterapia, São Carlos, 11(1) 83-89.
Santos, E. A., Soares, H. S., Silva, M. R., Rocha, T. A. F. & Fernandes, T. J. L. (2014). Uso correto dos óleos lubrificantes para máquinas agrícolas. Revista Cultivar Máquinas. Ed. 143.
Senar – Serviço Nacional de Aprendizagem Rural. (2009). Tratores Agrícolas: manutenção de tratores agrícolas. Coleção SENAR 130. Serviço Nacional de Aprendizagem Rural. Brasília: SENAR.
Sidahmed, M. (2001). Diagnostics and condition monitoring, basic concepts.
Encyclopedia of Vibration, Elsevier. doi.org/10.1006/rwvb.2001.0147.
Silveira, G. M. (2001). Os cuidados com o trator. Série Mecanização. Viçosa: Aprenda Fácil.
Simões, A., Viegas, J.M., Farinha, J.T. & Fonseca, I.(2017). The State of the Art of Hidden Markov Models for Predictive Maintenance of Diesel Engines. Quality and Reliability Engineering International, 33(1) 2765-2779. doi.org/10.1002/qre.2130.
Sitnik, L., Pentós, K., Magdziak-Toklowicz, M. & Wrobel, R. (20150. The Laser Doppler Vibrometry in mechatronics diagnostics. Archives of Civil and Mechanical Engineering, 15(1) 962-970. doi.org/10.1016/j.acme.2015.04.001.
Snook, W. A. (1968). Análise de óleos usados de motores. Lubrificação, 54(9) 97-116.
Syan, C. S. & Ramsoobag, G. (2019). Maintenance applications of multi-criteria optimization: A review. Reliability Engineering & System Safety, 190(1). doi.org/10.1016/j.ress.2019.106520.
Taheri-Garavand, A., Ahmadi, H., Omid, M., Mohtasebi, S. S., Mollazade, K., Smith, A. J. R. & Carlomagno, G. M. (2015). An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique. Applied Thermal Engineering, 87(1) 434-443. doi.org/10.1016/j.applthermaleng.2015.05.038.
Vian, C. E. F., Andrade JR, A. M., Baricelo, G. & Silva, R. P. (2013). Origens, evolução e tendências da indústria de máquinas agrícolas. Rev. Econ. Sociol. Rural. 51(4) 719-744. Brasília. doi.org/10.1590/S0103-20032013000400006.
Villanueva, J. A. B., Espadafor, F. J., Cruz-Peragon, F. & Garcia, M. T. (2011). A methodology for cracks identification in large crankshafts. Mechanical Systems and Signal Processing. 25(8) 3168-3185. doi.org/10.1016/j.ymssp.2011.02.018.
Wang, J., Mao, X., Zhu, K., Song, J. & Zhuo, B. (2009). An intelligent diagnostic tool for electronically controlled diesel engine. Mechatronics, 19(1) 859-867. doi.org/10.1016/j.mechatronics.2009.04.009.
Wolak, A. (2018). TBN performance study on a test fleet in real-world driving conditions using present-day engine oils. Measurement, 114(1) 322-331. doi.org/10.1016/j.measurement.2017.09.044.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Evelim Larissa Rombi De Aquino ; Mario Mollo Neto; Cristiane Hengler Corrêa Bernardo; Flávio José de Oliveira Morais; Paulo Sérgio Barbosa dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.