Inoculation of microorganisms and addition of residues to recover a degraded area in the Cerrado, effects after six years' intervention

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10453

Keywords:

Water hyacinth; Sugarcane bagasse ash; Arbuscular mycorrhiza; Degraded áreas; Microbial biomass-C.

Abstract

Degraded areas are the result of anthropic action, such as those adjacent to hydroelectric plants (HPP), where the soil is removed for use in the construction of the dam. Without the fertile layer, the exposed subsoil does not contribute to natural regeneration. As a result of the intense degradation, new technologies are required for land vegetation cover and the recovery of ecosystem functions. In this pursuit, we proceeded to inoculation (soil-inoculum) of microorganisms and the addition of residues. After six years, this study aimed to evaluate the chemical and microbiological attributes of the soil, as well as the spontaneous growth of native grasses, considered as indicators in this research. The study was performed in an area degraded by the construction of the HPP, in the city of Selvíria – MS, on the farm of UNESP – Ilha Solteira School of Engineering (Brazil), where the original vegetation was the Cerrado. The experimental design was randomized blocks, in a 2 x 4 factorial scheme, that is, 4 residue treatments in pits (macrophytes – MC; sugarcane bagasse ash – SBA; MC + SBA; and control without residues) and two inoculation treatments (with and without soil-inoculum), with 4 replicates (blocks) and 5 pits per replicate. The soil-inoculum, source of microorganisms, including spores of arbuscular mycorrhizal fungi (AMF), was collected in the preserved Cerrado area. Increases in the levels of P, K, Ca, SB, and V%, with a reduction of Al and greater sporulation of AMF were provided by the addition of soil-inoculum, but not by the residues. After six years of its implementation, small alterations were observed, indicating that the contributions of the residues were quickly exhausted, or that the amount was insufficient for the intense existing degradation.

References

Anderson, T. H., & Domsch, K. H. (1980). Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science, 130(4), 211-216.

Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25(3), 393-395.

An, S., Darboux, F., & Cheng, M. (2013). Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau. Geoderma, 209-210, 75-85.

Asmelash, F., Bekele, T., & Belay, Z. (2019). Comparative field survival and growth of selected Ethiopian native tree species and the effect of whole soil arbuscular mycorrhizal fungi inoculation. Journal of Horticulture and Forestry, 11(2), 19-31.

Bao, N., Wu, L., Ye, B., Yang, K., & Zhou, W. (2017). Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma, 288(1), 47-55.

Basu, M., Pande, M., Bhadoria, P. B. S., & Mahapatra, S. C. (2009). Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science, 19(10), 1173-1186.

Boni, T. S., Mizobata, K. K. G. S., Silva, M. S. C., Monteiro, L. N. H., Barbieri, R. S., Maltoni, K. L., Teixeira Filho, M. C. M., Masenga, E. H., Lyamuya, R. D., Mjingo, E. E., Fyumagwa, R. D., & Roskaft, E. (2017). Chemical soil attributes of Cerrado areas under different recovery managements or conservation levels. International Journal of Biodiversity and Conservation, 9(5), 115-121.

Brown, S., Mahoney, M., & Sprenger, M. A. (2014). Comparison of the efficacy and ecosystem impact of residual-based and topsoil-based amendments for restoring historic mine tailings in the tri-state mining district. Science of the Total Environment, 485(1), 624-632.

Cezar, V. R. S., Villas Boas, R. L., Corrêa, M. R., Negrisoli, E., & Velini, E. D. (2005). Avaliação da degradação de macrófitas aquáticas descartadas em ambiente protegido. Planta Daninha, 23(2), 255-261.

Cheng, W., & Kuzyakov Y. (2005). Root effects on soil organic matter decomposition. Agronomy, 48, 119-144.

Cheng, W., Parton W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., Mcnickle, G. G., Brzostek, E., & Jastrow, J. D. (2013). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201(1), 31-44.

Companhia Energética de São Paulo- CESP (1988). Ilha Solteira: a cidade e a usina. São Paulo: CESP.

Coutinho, E. S., Barbosa, M., Beiroz, W., Mescolotti, D. L. C., Bonfim, J. A., Berbara, R. L. L., & Fernandes, G. W. (2019). Soil constraints for arbuscular mycorrhizal fungi spore community in degraded sites of rupestrian grassland: Implications for restoration. European Journal of Soil Biology, 90(1), 51-57.

Demattê, J. L. I. (1980). Levantamento detalhado dos solos do campus experimental de Ilha Solteira. Piracicaba: ESALQ/USP.

Di Lonardo, D. P., De Boer, W., Klein Gunnewiek, P. J. A., Hannula, S. E., & Van der Wal, A. (2017). Priming of soil organic matter: chemical structure of added compounds is more important than the energy content. Soil Biology and Biochemistry, 108(1), 41-54.

Feitosa, D. G., Maltoni, K. L., & Silva, I. P. F. (2009). Avaliação da cinza oriunda da queima do bagaço da cana-de-açúcar na substituição da adubação química convencional para produção de alimentos e preservação do meio ambiente. Revista Brasileira de Agroecologia, 4(2), 2412-2415.

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535.

Ferreira, E. P. B., Fageriae, N. K., & Didonet, A. D. (2012). Chemical properties of an Oxisol under organic management as influenced by application of sugarcane bagasse ash. Revista Ciência Agronômica, 43(2), 228-236.

Fusconi, A., & Mucciarelli, M. (2018). How important is arbuscular mycorrhizal colonization in wetland and aquatic habitats? Environmental and Experimental Botany, 155, 128-141.

García-Orth, X., & Martínez-Ramos, M. (2011). Isolated trees and grass removal improve performance of transplanted Trema micrantha (L.) Blume (Ulmaceae) samplings in tropical pastures. Restoration Ecology, 19(1), 24-34.

Gehring, C. A., Swaty, R. L., & Deckert, R.J. (2017). Mycorrhizas drought, and host-plant mortality. In: Johnson, N. C., Gehring, C. & Jansa, J. (ed.) Mycorrhizal Mediation of Soil: Fertility, structure and carbon storage. Illinois: Elsevier Inc. 279-298.

Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transaction of British Mycological Society, 46(2), 234-244.

Guerra, A., Reis, L. K., Borges, F. L. G., Ojeda, P. T. A., Pineda, D. A. M., Miranda, C. O., Maidana, D. P. F. L., Santos, T. M. R., Shibuya, P. S., Marques, M. C. M., Laurance, S. G. W., & Garcia, L. C. (2020). Ecological restoration in Brazilian biomes: Identifying advances and gaps. Forest Ecology and Management, 458, e-117802.

Jackson, O., Quilliam, R. S., Stott, A., Grant, H.; & Subke, J. -A. (2019). Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates. Plant Soil, 440(1-2), 473-490.

Jenkins, W. R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter, 48(9), 692.

Ji, L., Tan, W., & Chen, X. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well watered and drought stress conditions. Soil and Tillage Research, 185(7), 1-8.

Johnson, N. C., & Jansa, J. (2017). Mycorrhizas. Mycorrhizal Mediation of Soil. Prague, Elsevier.

Kayama, M., Takenaka, K., Abebe, B., & Birhane, E. (2019). Effects of biochar on the growth of Olea europaea subsp. cuspidata and Dodonaea angustifolia planted in Tigray, northern Ethiopia. Journal of Japanese Society Revegetation Technology, 45(1), 115-120.

Kuzyakov, Y., & Bol, R. (2006). Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 38(4), 747-758.

Lannes, L. S., Karrer, S., Teodoro, D. A. A., Bustamante, M. M. C., Edwards, P. J., & Venterink, H. O. (2020). Species richness both impedes and promotes alien plant invasions in the Brazilian Cerrado. Scientific Reports, 10(1), e-113365.

Lentz, R. D., & Ippolito, J. A. (2012). Biochar and manure affect calcareous soil and corn silage nutrients concentration and uptake. Journal of Environmental Quality, 41(4), 1033-1043.

Lima, S. L., Marimon-Junior, B. H., Tamiozzo, S., Petter, F. A., Marimon, B. S., & Abreu, M. F. (2016). Biochar added to a red oxisol benefits the sugar beet seedlings development? Comunicata Scientiae, 7(1), 97-103.

Lisboa, B. B., Vargas, L. K., Silveira, A. O., Martins, A. F., & Selbach, P. A. (2012). Indicadores microbianos de qualidade do solo em diferentes sistemas de manejo. Revista Brasileira de Ciência do Solo, 36(1), 45-55.

Machado, K. S., Maltoni, K. L., Santos, C. M., & Cassiolato, A. M. R. (2014). Resíduos orgânicos e fósforo como condicionantes de solo degradado e efeitos sobre o crescimento inicial de Dipteryx alata Vog. Ciência Florestal, 24(3), 541-552.

Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. (2a ed.), Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 55-114.

Marcondes, D. A. S., Mustafá, A. L., & Tanaka, R. H. (2003). Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In: Thomaz, S. M., & Bini, L. M. (Eds.). Ecologia e manejo de macrófitas aquáticas. Maringá: Eduem, 299-317.

Miccolis, A., Peneireiros, F. M., Vieira, D. L. M., Marques, H. R., & Hoffman, M. R. M. (2019). Restoration through agroforestry: Options for reconciling livelihoods with conservation in the Cerrado and Caatinga biomes in Brazil. Experimental Agriculture, 55(s1), 208-225.

Mizobata, K. K. G. S., Santos, C. M., Maltoni, K. L., Faria, G. A., & Cassiolato, A. M. R. (2015). Growth of Hymenaea stigonocarpa as a function of the addition of residues in degraded soil. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(3), 223-229.

Mormul, R. P., Ferreira, F. A., Michelan, T. S., Carvalho, P., Silveira, M. J., & Thomas, S. M. (2010). Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil. Revista de Biología Tropical, 58(4), 1437-1451.

Muñoz-Rojas, M. (2018). Soil quality indicators: critical tools in ecosystem restoration. Environmental Science and Health, 5(41), 47-52.

Pereira A. S.; Shitsuka, D. M.; Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria, RS: Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots for rapid assessment of infection. Transaction of British Mycology Society, 55(1), 158-161.

Raij, B. van, Andrade, J. C., Cantarella, H., & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico.

Rillig, M. C., Wagner, M., Salem, M., Antunes, P. M., George, C., Ramke, H. G., Titirici, M. M., & Antonietti, M. (2010). Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Applied Soil Ecology, 45(3), 238-242.

Rodrigues, G. B., Maltoni, K. L., & Cassiolato, A. M. R. (2007) Dinâmica da regeneração do subsolo de áreas degradadas dentro do bioma Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(1), 73-80.

Roni, P., & Beechie, T. (2013). Stream and watershed restoration: a guide to restoring riverine processes and habitats. Oxford: Wiley-Blackwell.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lubreras, J. F., Coelho, M. R., Almeida, J. A., Araújo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018) Sistema Brasileiro de Classificação de Solos. (5a ed.), Brasília: Embrapa.

Schoebitz, M., López, M., & Roldán, A. (2013). Bioencapsulation of microbial inoculants for better soil–plant fertilization: a review. Agronomy for Sustainable Development, 33(4), 751-765.

Sephton-Clark, P. C. S., & Voelz, K. (2018). Spore germination of pathogenic filamentous fungi. Advances in Applied Microbiology, 102, 117-157.

Sparling, G. P. (1992). Ratio of microbial biomass carbon to soil organic matter. Australian Journal of Soil Research, 30(2), 195-207.

Thind, H. S., Singh, Y-S., Singh, B., Singh, V., Sharma, S., Vashistha, M., & Singh, G. S. (2012). Land application of rice husk ash, bagasse ash and coal fly ash: Effects on crop productivity and nutrient uptake in rice–wheat system on an alkaline loamy sand. Field Crops Research, 135, 137-144.

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 773-777.

Veldman, J. W. (2016). Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, e-20150306.

Wang, H., Boutton T. W., Xu, W., Hu, G., Jiang, P., & Bai, E. (2015). Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Scientific Reports, 5, e-10102.

Zimmerman, A. R., Gao, B., & Ahn, M. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169-1179.

Published

01/12/2020

How to Cite

ZANCANARI, N. S.; SILVA, P. S. T. .; MALTONI, K. L.; CASSIOLATO, A. M. R. Inoculation of microorganisms and addition of residues to recover a degraded area in the Cerrado, effects after six years’ intervention. Research, Society and Development, [S. l.], v. 9, n. 11, p. e71091110453, 2020. DOI: 10.33448/rsd-v9i11.10453. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10453. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences