Ivermectin: is necessary to think outside the box to reposition it
DOI:
https://doi.org/10.33448/rsd-v9i11.10611Keywords:
Ivermectin; Antiparasitic; Antiviral; Anti-inflammatory; Repositioning of Medicines.Abstract
Ivermectin (IVM) is a drug derived from avermectin B1 with high permeability and low solubility. It is used as a broad spectrum antiparasitic and studies reveal promising antiviral and anti-inflammatory activities. In addition, formulations and delivery systems have been applied to optimize the solubility and bioavailability of the drug. Thus, it is intended to highlight the development of new formulations and delivery systems containing IVM in view of not only the technological benefits, but also the benefits of effectiveness in the face of distinct disorders for which the drug was not originally applied. The delivery systems have been applied to optimize the solubility and bioavailability of IVM, reduce its cytotoxicity and increase the therapeutic effect in smaller doses. In this sense, the literature reveals different formulations and delivery systems containing IVM that aim to improve their physical-chemical properties, such as microparticles, microspheres, liposomes, microemulsions, in situ formation gel, controlled and prolonged release formulations, solid dispersion and micelles mixed. As a potential antiviral agent, this drug inhibits the replication of viral strains and reduces serum levels of viral protein in in vitro and in vivo studies; when incorporated into liposomes, efficacy was high and toxicity reduced. IVM has shown potential for application in dermatological disorders due to anti-inflammatory activity, highlighting the successful repositioning for the treatment of papulopustular rosacea. Therefore, repositioning older drugs to treat common or rare diseases, as well as in the face of an urgent need, becomes an attractive tool in the scope of drug research and development.
References
Ashour, D. S. (2019). Ivermectin: From theory to clinical application. International Journal of Antimicrobial Agents, 54, 134-142. doi: https://doi.org/10.1016/j.ijantimicag.2019.05.003
Ávila, M. Y., Martínez-Pulgarín, D. F. & Madrid, C. R. (2020). Topical ivermectin-metronidazole gel therapy in the treatment of blepharitis caused by Demodex spp.: A randomized clinical trial. Contact Lens and Anterior Eye, S1367-0484 (20), 30084-9. doi: https://doi.org/10.1016/j.clae.2020.04.011
Ballent, M., Maté, M. L., Dominguez, P., Virkel, G., Albérich, M., Lespine, A. Lanusse, C. & Lifschitz, A. L. (2018). Assessment of the long-acting ivermectin formulation in sheep: further insight into potential pharmacokinetic interactions. Journal of Veterinary Pharmacology and Therapeutics, 42 (2), 189-196. doi: https://doi.org/10.1111/jvp.12739
Barańska-rybak, W. & Kowalska-olędzka, E. (2019). New indications for topical ivermectin 1% cream: a case series study. Postepy dermatologii i alergologii, 36 (1), 58-62. doi: https://doi.org/10.5114/ada.2019.82825
Barrows, N. J., Campos, R. K., Powell, S. T., Prasanth, K. R., Schott-Lerner, G., Soto-Acosta, R., Galarza-Muñoz, G., McGrath, E. L., Urrabaz-Garza, R., Gao, J., Wu, P., Menon, R., Saade, G., Fernandez-Salas, I., Rossi, S. L., Vasilakis, N., Routh, A., Bradrick, S. S. & Garcia-blanco, M. A. (2016). A screen of FDA approved drugs for inhibitors of Zika virus infection. Cell Host Microbe, 20, 259–270. doi: https://doi.org/10.1016/j.chom.2016.07.004
Bassissi, F., Lespine, A. & Alvinerie, M. Assessment of a liposomal formulation of ivermectin in rabbit after a single subcutaneous administration. Parasitology Research, 98, 244–249, 2006. doi: https://doi.org/10.1007/s00436-005-0073-z
Blakley, B. R. & Rousseaux, C. G. (1991). Effect of ivermectin on the immune response in mice. American Journal of Veterinary Research, 52, 593-595. Disponível em: https://pubmed.ncbi.nlm.nih.gov/1828942/
BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária – ANVISA. Aresto Nº 1338, de 17 de janeiro de 2020. Diário Oficial da União, Brasília, 20 de janeiro de 2020, Edição 13, Seção 1, p. 86. Recuperado em 08 setembro, 2020, de: <https://www.in.gov.br/web/dou/-/aresto-n-1.338-de-17-de-janeiro-de-2020-238767160>
Bruch, G. E., Fernandes, L. F., Bassi, B. L. T., Alves, M. T. R., Pereira, I. O., Frézard, F. & Massensini, A. R. (2019). Liposomes for drug delivery in stroke. Brain Research Bulletin, 152, 246-256. doi: https://doi.org/10.1016/j.brainresbull.2019.07.015
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A. & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. doi: https://doi.org/10.1016/j.antiviral.2020.104787
Camargo, J. A., Sapin, A., Daloz, D. & Maincent, P. (2010). Ivermectin-loaded microparticles for parenteral sustained release:in vitrocharacterization and effect of some formulation variables. Journal of Microencapsulation, 27 (7), 609–617. doi: https://doi.org/10.3109/02652048.2010.501397
Camargo, J. A., Sapin, A., Nouvel, C., Daloz, D., Leonard, M., Bonneaux, F. & Maincent, P. (2003). Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Drug Development and Industrial Pharmacy, 39 (1), 146–155. doi: https://doi.org/10.3109/03639045.2012.660952
Cardwell, L. A., Alinia, H.; Moradi, S. T. & Feldman, S. R. (2016). New developments in the treatment of rosacea - role of once-daily ivermectin cream. Clinical, Cosmetic and Investigational Dermatology, 9, 71-77. doi: https://doi.org/10.2147/CCID.S98091
Chaccour, C., Hamman, F. & Rabinovich, R. (2017). Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malararia Journal, 161, 2–16. doi: https://doi.org/10.1186/s12936-017-1801-4
Chen, L. & Zhou, J. (2006). Influence of Formulation Factors on Transdermal Absorption of Ivermectin Microemulsion. Chinese Pharmaceutical Journal. Disponível em: https://www.semanticscholar.org/paper/Influence-of-Formulation-Factors-on-Transdermal-of-Jian-ping/eb9a1e39705a0c99311646a79368413bc5863889
Clark, S. L., Crowley, A. J., Schmidt, P. G., Donoghue, A. R. & Piche, C. (2004). A. Long-term delivery of ivermectin by use of poly(D,L-lactic-co-glycolic)acid microparticles in dogs. American Journal of Veterinary Research, 65 (6), 752–757. doi: https://doi.org/10.2460/ajvr.2004.65.752
Croci, R., Bottaro, E., Wing, K., Chang, K., Watanabe, S., Pezzulo, M., Mastrangelo, E. & Natruzzi, C. (2016). Liposomal systems as nanocarriers for the antiviral agent Ivermectin. International Journal of Biomaterials, 8043983, 1-15. doi: https://doi.org/10.1155/2016/8043983
Crump, A. (2017). Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations. The Journal of Antibiotics, 70, 495–505. Disponível em: https://www.nature.com/articles/ja201711
Das, S., Lee, S. H., Chia, V. D., Chow, P. S., Macbeath, C., Liu, Y. & Shlieout, G. (2020). Development of microemulsion based topical ivermectin formulations: Preformulation and formulation studies. Colloids and Surfaces B: Biointerfaces, 189, 110823. doi: https://doi.org/10.1016/j.colsurfb.2020.110823
Dong, J., Song, X., Lian, X., Fu, Y. & Gong, T. (2016). Subcutaneously injected ivermectin-loaded mixed micelles: formulation, pharmacokinetics and local irritation study. Drug Delivery, 23 (7), 2220-2227. doi: https://doi.org/10.3109/10717544.2014.956849
Dorati, R., Conti, B., Colzani, B., Dondi, D., Lazzaroni, S., Moderna, T. & Genta, I. (2018). Ivermectin controlled release implants based on poly-D,L-lactide and poly-εcaprolactone. Journal of Drug Delivery Science and Technology, 46, 101-110. doi: https://doi.org/10.1016/j.jddst.2018.04.014
Ebbelaar, C. C. F., Venema, A. W. & Van Dijk, M. R. (2018). Topical ivermectin in the treatment of papulopustular rosacea: a systematic review of evidence and clinical guideline recommendations. Dermatol Ther (Heidelb), 8 (3), 379-387. doi: https://doi.org/10.1007/s13555-018-0249-y
Fromstein, S. R., Harthan, J. S., Patel. J. & Opitz, D. L. (2018). Demodex blepharitis: clinical perspectives. Clinical Optometry (Auckl), 10, 57-63. doi: https://doi.org/10.2147/OPTO.S142708
Genchi, C., Rinaldi, L., Mortarino, M., Genchi, M. & Cringoli, G. (2009). Climate and Dirofilaria infection in europeu. Veterinary Parasitology, 163, 286–292. doi: https://doi.org/10.1016/j.vetpar.2009.03.026
Geng, Z., Luo, X., Zhang, Z., Li, H., Tian, J. & Yu, Z. (2016). Study of an injectable in situ forming gel for sustained-release of Ivermectin in vitro and in vivo. International Journal of Biological Macromolecules, 85, 271-6. doi: https://doi.org/10.1016/j.ijbiomac.2015.12.028
Gil, A. C. (2008). Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas.
González, C. A., Sahagún, P. A. M., Diez, L. M. J., Fernández, M. N., Sierra, V. M. & García, V. J. J. (2008). The pharmacokinetics and interactions of ivermectin in humans—a mini-review. The AAPS Journal, 10, 42–6. doi: https://doi.org/10.1208/s12248-007-9000-9
Liu, X., Sun, Q., Wang, H., Zhang, L. & Wang, J-Y. (2005). Microspheres of corn protein, zein, for an ivermectin drug deliverysystem. Biomaterials, 26, 109–115, 2005. https://doi.org/10.1016/j.biomaterials.2004.02.013
Lv, C., Liu, W., Wang, B., Dang, R., Qiu, L., Ren, J., Yan, C. & Yang, Z. (2018). Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Research, 159, 55-62. doi: https://doi.org/10.1016/j.antiviral.2018.09.010
Maeda, H., Brandon, M. & Sano, A. (2003). Design of controlled-release formulation for ivermectin using silicone. International Journal of Pharmaceutics, 261 (1–2), 9-19. doi: https://doi.org/10.1016/S0378-5173(03)00293-X
Mastrangelo, E., Pezzullo, M., De Burghgraeve, T., Kaptein, S., Pastorino, B., Dallmeier, K., De Lamballerie, X., Neyts, J., Hanson, A. M., Frick, D. N., Bolognesi, M. & Milani, M. (2012). Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. Journal of Antimicrobial Chemotherapy, 67, 1884–1894. doi: https://doi.org/10.1093/jac/dks147
McCall, J. W. (2005). The safety-net story about macrocyclic lactone heartworm preventives: a review, an update, and recommendations. Veterinary Parasitology, 133, 197–206. doi: https://doi.org/10.1016/j.vetpar.2005.04.005
Mènonville S. T., Rosignoli, C., Soares, E. Roquet, M., Bertino, B., Chappuis, J-P., Chaussade, C. D-P. & Piwnica, D. (2017). Topical treatment of rosacea with ivermectin inhibits gene expression of cathelicidin innate immune mediators, LL-37 and KLK5, in reconstructed and ex-vivo models. Dermatologic Therapy, 7, 213–25. doi: https://doi.org/10.1007/s13555-017-0176-3
Navel, V., Mulliez, A., D’Azy, C. B., Baker, J. S., Malecaze, J., Chiambaretta, F. & Dutheil, F. (2019). Efficacy of treatments for Demodex blepharitis: a systematic review and meta-analysis. The Ocular Surface, 17 (4), 655-669. doi: https://doi.org/10.1016/j.jtos.2019.06.004
Õmura, S. (2008). Ivermectin: 25 years and still going Strong. International Journal of Antimicrobial Agents, 21, 91-98. doi: https://doi.org/10.1016/j.ijantimicag.2007.08.023
Panahi, Y., Poursaleh, Z. & Goldust, M. (2015). The efficacy of topical and oral ivermectin in the treatment of human scabies. Annals of Parasitology, 61, 11–16. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25911032/
Panayotova-Pencheva, M. S. (2016). Ivermectin-behandlung von endoparasiten bei wildtieren in menschenobhut: eine übersicht, zool, Garten, 85, 280–308. doi: https://doi.org/10.1016/j.zoolgart.2016.04.001
Patel, V. P., Lakkad, H. A. & Ashara, K. C. (2018). Formulation studies of solid self-emulsifying drug delivery system of ivermectin. Folia Medica, 60 (4), 580-593. doi: https://doi.org/10.2478/folmed-2018-0024
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado em 24 novembro, 2020, de: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1
Raman, S. & Polli, J. E. (2016). Prediction of positive food effect: bioavailability enhancement of BCS class II drugs. International Journal of Pharmaceutics, 506, 110–115. doi: https://doi.org/10.1016/j.ijpharm.2016.04.013
Sajid, M. S., Iqbal, Z., Muhammad, G., Sandhu, M. A., Khan, M. N., Saqib, M. & Iqbal, M. U. (2007). Effect of ivermectin on the cellular and humoral immune responses of rabbits. Life Sciences, 80, 1966-1970. doi: https://doi.org/10.1016/j.lfs.2007.02.02
Savanur, N. H., Honnegowda, Krishnappa, G., Sastry, K. V. & Navayana, K. (1996). Effect of ivermectin on lymphocyte status in rabbits. Indian Veterinary Journal, 73, 501-503. doi: https://doi.org/10.1016/0165-2427(92)90173-N
Stankiewicz, M., Cabaj, W., Jonas, W. E., Moore, L. G., Millar, K. & Chie, W. N., (1995). Influence of ivermectin on cellular and humoral immune responses of lambs. Veterinary Immunology and Immunopathology, 44, 347- 358. doi: https://doi.org/10.1016/0165-2427(94)05308-F
Stein, L., Kircik, L., Fowler, J., Tan, J., Draelos, Z., Fleischer, A., Appell, M., Steinhoff, M., Lynde, C., Liu, H. & Jacovella, J. (2014). Efficacy and Safety of Ivermectin 1% Cream in Treatment of Papulopustular Rosacea: Results of Two Randomized, Double-Blind, Vehicle-Controlled Pivotal Studies. Journal of Drugs In Dermatology, 13 (3), 316-323. Disponível em: https://pubmed.ncbi.nlm.nih.gov/24595578/#:~:text=Significantly%20more%20subjects%20receiving%20IVM,inflammatory%20lesions%20of%20papulopustular%20rosacea.
Stewart, G. R., Boussinesq, M., Coulson, T., Elson, L., Nutman, T. & Bradley, J. E. (1999). Onchocerciasis modulates the immune response to mycobacterial antigens. Clinical & Experimental Immunology, 117, 517–523. doi: https://doi.org/10.1046/j.1365-2249.1999.01015.x
Taieb, A., Khemis, A., Ruzicka, T., Baranska-Rybak, W., Berth-Jones, J., Schauber, J., Briantais, P., Jacovella, J. & Passeron, T. (2016). Maintenance of remission following successful treatment of papulopustular rosacea with ivermectin 1% cream vs. metronidazole 0.75% cream: 36-week extension of the ATTRACT randomized study. Journal of the European Academy of Dermatology and Venereology, 30 (5), 829-836. doi: https://doi.org/10.1111/jdv.13537
Taieb, A., Ortonne, J. P., Ruzicka, T., Berth-Jones, J., Peirone, M. H. & Jacovella, J. (2015). Superiority of ivermectin 1% cream over metronidazole 0·75% cream in treating inflammatory lesions of rosacea: a randomized, investigator-blinded trial. British Journal of Dermatology, 172 (4), 1103-1110. doi: https://doi.org/10.1111/bjd.13408
Ullio-Gamboa, G., Palma, S., Benoit, J. P., Allemandi, D., Picollo, M. I. & Toloza, A. C. (2017). Ivermectin lipid-based nanocarriers as novel formulations against head lice. Parasitology research, 116 (8), 2111-2117. doi: https://doi.org/10.1007/s00436-017-5510-2
Valarini Jr, O., Cardoso, F. A. R., Giufrida, W. M., De Souza, M. F. & Cardozo-Filho, L. (2020). Production and computational fluid dynamics-based modeling of PMMA nanoparticles impregnated with ivermectin by a supercritical antisolvent process. Journal of CO2 Utilization, 35, 47-58. doi: https://doi.org/10.1016/j.jcou.2019.08.025
Varghese, F. S., Kaukinen, P., Gläsker, S., Bespalov, M., Hanski, L., Wennerberg, K., Kümmerer, B. M. & Ahola, T. (2016). Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Research, 126, 117–124. doi: https://doi.org/10.1016/j.antiviral.2015.12.012
Ventre, E., Rozières, A., Lenief, V., Albert, F., Rossio, P., Laoubi, L., Dombrowicz, D., Staels, B., Ulmann, L., Julia, V., Jomard, A., Hacini-Rachinel, F., Nicolas, J-F. & Vocanson, M. (2017). Topical ivermectin improves allergic skin inflammation. Allergy, 72 (8), 1212–1221. doi: https://doi.org/10.1111/all.13118
Verma, S., Patel, U. & Patel, R. (2017). Formulation and evaluation of ivermectin solid dispersion. Journal of Drug Delivery & Therapeutics, 7 (7), 15-7. doi: https://doi.org/10.22270/jddt.v7i7.1572
Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D. & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443, 851–856. doi: https://doi.org/10.1042/BJ20120150
Yamasmith, E., Avirutan, P., Mairiang, D., Tanrumluk, S., Ssuputtamongkol, Y., Saleh-Arong, F. A., Angkasekwinai, N., Wongsawat, E. & Fongsri, U. (2018). Efficacy and safety of ivermectin against dengue infection: a phase III, randomized, double-blind, placebo-controlled trial. In: He 34th Annual Meeting the Royal College of Physicians of Thailand. Internal Medicine and One Health, Chonburi, Thailand. Disponóvel em: https://clinicaltrials.gov/ct2/show/NCT02045069
Yan, S., Ci, X., Chen, N., Chen, C., Li, X., Chu, X., Li, J. & Deng, X. (2011). Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflammation Research, 60, 589–596. Disponível em: https://link.springer.com/article/10.1007/s00011-011-0307-8#:~:text=In%20the%20present%20study%2C%20we,also%20inhibits%20AHR%20in%20a
Zeng, Z., Andrew, N. W., Arison, B. H., Luffer-Atlas, D. & Wang, R. W. (1998). Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes. Xenobiotica, 28, 313–21. doi: https://doi.org/10.1080/004982598239597
Zhang, X., Song, Y., Ci, X., An, N., Ju, Y., Li, H., Wang, X., Han, C., Cui, J. & Deng, X. (2008). Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflammation Research, 57, 524–529. doi: https://doi.org/10.1007/s00011-008-8007-8
Zhang, X., Song, Y., Xiong, H., Ci, X., Li, H., Yu, L., Zhang, L. & Deng, X. (2009). Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. International Immunopharmacology, 9 (3), 354-359. doi: https://doi.org/10.1016/j.intimp.2008.12.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Thais Cruz Ramalho; Rayran Walter Ramos de Sousa; Duanne Mendes Gomes; André Luís Menezes Carvalho; Railson Pereira Souza; Hercília Maria Lins Rolim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.