Immunohistochemical and histomorphometric analysis of alveolar repair in spontaneously hypertensive rats (SHR) treated with losartan
DOI:
https://doi.org/10.33448/rsd-v9i11.10634Keywords:
Losartan; Angiotensin II; Bone.Abstract
Hypertension is a multifactorial condition with high rates of complications such as cardiovascular and renal diseases, making it a worldwide public health concern. This disease alters calcium regulation by inducing bone loss, which is limited by anti-hypertensive drugs. One such drug, losartan, inhibits angiotensin II (Ang II) AT1 receptors. The aim of this study was to compare the process of alveolar repair in spontaneously hypertensive rats (SHR) and Wistar rats, and to assess the effect of losartan on bone dynamics. Treated and untreated rats underwent dental extraction of the upper right incisor and were euthanized 7, 14, or 28 days after surgery. Alveolar repair was then analyzed histomorphometrically and immunohistochemically by measuring proteins involved in bone metabolism. Data were analyzed using the nonparametric Kruskal-Wallis test, followed by the Mann Whitney test for comparison of samples at different times. Alveolar repair was slow in SHRs, while losartan increased bone formation and trabecular thickness in both SHRs and Wistars. Because the analyzed proteins are found in dynamic bone, it is suggested that losartan interferes with the actions of angiotensin II and the renin-angiotensin system and limits bone metabolism.
References
Afghani, A., & Goran, M. I. (2007). Lower bone mineral content in hypertensive compared with normotensive overweight Latino children and adolescents. American journal of hypertension, 20(2), 190–196. https://doi.org/10.1016/j.amjhyper.2006.07.014
Al-Majed, A. R., Assiri, E., Khalil, N. Y., & Abdel-Aziz, H. A. (2015). Losartan: Comprehensive Profile. Profiles of drug substances, excipients, and related methodology, 40, 159–194. https://doi.org/10.1016/bs.podrm.2015.02.003
Bastos, M. F., Brilhante, F. V., Gonçalves, T. E., Pires, A. G., Napimoga, M. H., Marques, M. R., & Duarte, P. M. (2010). Hypertension may affect tooth-supporting alveolar bone quality: a study in rats. Journal of periodontology, 81(7), 1075–1083. https://doi.org/10.1902/jop.2010.090705
Carvalho, A. A., de Castro, A. L., Melhado, R. M., & Bedran De Castro, J. C. (1983). Healing of tooth extraction wounds in rats with renal hypertension. A histological study. The Journal of Nihon University School of Dentistry, 25(3), 214–220. https://doi.org/10.2334/josnusd1959.25.214
Chen, S., Grover, M., Sibai, T., Black, J., Rianon, N., Rajagopal, A., Munivez, E., Bertin, T., Dawson, B., Chen, Y., Jiang, M. M., Lee, B., Yang, T., & Bae, Y. (2015). Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton. Molecular genetics and metabolism, 115(1), 53–60. https://doi.org/10.1016/j.ymgme.2015.02.006
Donmez, B. O., Ozdemir, S., Sarikanat, M., Yaras, N., Koc, P., Demir, N., Karayalcin, B., & Oguz, N. (2012). Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacological reports : PR, 64(4), 878–888. https://doi.org/10.1016/s1734-1140(12)70882-4
Emanueli, C., Salis, M. B., Stacca, T., Gaspa, L., Chao, J., Chao, L., Piana, A., & Madeddu, P. (2001). Rescue of impaired angiogenesis in spontaneously hypertensive rats by intramuscular human tissue kallikrein gene transfer. Hypertension (Dallas, Tex. : 1979), 38(1), 136–141. https://doi.org/10.1161/01.hyp.38.1.136
Gealh, W. C., Pereira, C. C., Luvizuto, E. R., Garcia-Júnior, I. R., Antoniali, C., & Okamoto, R. (2014). Healing process of autogenous bone graft in spontaneously hypertensive rats treated with losartan: an immunohistochemical and histomorphometric study. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 72(12), 2569–2581. https://doi.org/10.1016/j.joms.2014.07.010
Hatton, R., Stimpel, M., & Chambers, T. J. (1997). Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. The Journal of endocrinology, 152(1), 5–10. https://doi.org/10.1677/joe.0.1520005
Hiruma, Y., Inoue, A., Hirose, S., & Hagiwara, H. (1997). Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochemical and biophysical research communications, 230(1),176–178. https://doi.org/10.1006/bbrc.1996.5914
Ma, L., Ji, J. L., Ji, H., Yu, X., Ding, L. J., Liu, K., & Li, Y. Q. (2010). Telmisartan alleviates rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. Bone, 47(1), 5–11. https://doi.org/10.1016/j.bone.2010.03.016
Manrique, N., Pereira, C. C., Garcia, L. M., Micaroni, S., Carvalho, A. A., Perri, S. H., Okamoto, R., Sumida, D. H., & Antoniali, C. (2012). Alveolar bone healing process in spontaneously hypertensive rats (SHR). A radiographic densitometry study. Journal of applied oral science : revista FOB, 20(2), 222–227. https://doi.org/10.1590/s1678-77572012000200017
Manrique, N., Pereira, C. C., Luvizuto, E. R., Sánchez, M., Okamoto, T., Okamoto, R., Sumida, D. H., & Antoniali, C. (2015). Hypertension modifies OPG, RANK, and RANKL expression during the dental socket bone healing process in spontaneously hypertensive rats. Clinical oral investigations, 19(6), 1319–1327. https://doi.org/10.1007/s00784-014-1369-0
Moura, A. P., Montalvany-Antonucci, C. C., Taddei, S. R., Queiroz-Junior, C. M., Biguetti, C. C., Garlet, G. P., Ferreira, A. J., Teixeira, M. M., Silva, T. A., & Andrade, I., Jr (2016). Effects of angiotensin II type I receptor blocker losartan on orthodontic tooth movement. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 149(3), 358–365. https://doi.org/10.1016/j.ajodo.2015.09.019
Munzenmaier, D. H., & Greene, A. S. (2006). Chronic angiotensin II AT1 receptor blockade increases cerebral cortical microvessel density. American journal of physiology. Heart and circulatory physiology, 290(2), H512–H516. https://doi.org/10.1152/ajpheart.01136.2004
Queiroz-Junior, C. M., Silveira, K. D., de Oliveira, C. R., Moura, A. P., Madeira, M. F., Soriani, F. M., Ferreira, A. J., Fukada, S. Y., Teixeira, M. M., Souza, D. G., & da Silva, T. A. (2015). Protective effects of the angiotensin type 1 receptor antagonist losartan in infection-induced and arthritis-associated alveolar bone loss. Journal of periodontal research, 50(6), 814–823. https://doi.org/10.1111/jre.12269
Rizzoni, D., Pasini, E., Flati, V., Rodella, L. F., Paiardi, S., Assanelli, D., De Ciuceis, C., Porteri, E., Boari, G. E., Rezzani, R., Speca, S., Favero, G., Martinotti, S., Toniato, E., Platto, C., & Agabiti-Rosei, E. (2008). Angiotensin receptor blockers improve insulin signaling and prevent microvascular rarefaction in the skeletal muscle of spontaneously hypertensive rats. Journal of hypertension, 26(8), 1595–1601. https://doi.org/10.1097/HJH.0b013e328304b060
Santos, C. F., Morandini, A. C., Dionísio, T. J., Faria, F. A., Lima, M. C., Figueiredo, C. M., Colombini-Ishikiriama, B. L., Sipert, C. R., Maciel, R. P., Akashi, A. P., Souza, G. P., Garlet, G. P., Rodini, C. O., Amaral, S. L., Becari, C., Salgado, M. C., Oliveira, E. B., Matus, I., Didier, D. N., & Greene, A. S. (2015). Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PloS one, 10(8), e0134601. https://doi.org/10.1371/journal.pone.0134601
See S. (2001). Angiotensin II receptor blockers for the treatment of hypertension. Expert opinion on pharmacotherapy, 2(11), 1795–1804. https://doi.org/10.1517/14656566.2.11.1795
Shimizu, H., Nakagami, H., Osako, M. K., Hanayama, R., Kunugiza, Y., Kizawa, T., Tomita, T., Yoshikawa, H., Ogihara, T., & Morishita, R. (2008). Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 22(7), 2465–2475. https://doi.org/10.1096/fj.07-098954
Soltis, E. E., Jewell, A. L., Dwoskin, L. P., & Cassis, L. A. (1993). Acute and chronic effects of losartan (DuP 753) on blood pressure and vascular reactivity in normotensive rats. Clinical and experimental hypertension (New York, N.Y. : 1993), 15(1), 171–184. https://doi.org/10.3109/10641969309041618
Trippodo, N. C., & Frohlich, E. D. (1981). Similarities of genetic (spontaneous) hypertension. Man and rat. Circulation research, 48(3), 309–319. https://doi.org/10.1161/01.res.48.3.309
Tea, B. S., Dam, T. V., Moreau, P., Hamet, P., & deBlois, D. (1999). Apoptosis during regression of cardiac hypertrophy in spontaneously hypertensive rats. Temporal regulation and spatial heterogeneity. Hypertension (Dallas, Tex. : 1979), 34(2), 229–235. https://doi.org/10.1161/01.hyp.34.2.229
Whitebread, S., Mele, M., Kamber, B., & de Gasparo, M. (1989). Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochemical and biophysical research communications, 163(1), 284–291. https://doi.org/10.1016/0006-291x(89)92133-5
Yamamoto, S., Kido, R., Onishi, Y., Fukuma, S., Akizawa, T., Fukagawa, M., Kazama, J. J., Narita, I., & Fukuhara, S. (2015). Use of renin-angiotensin system inhibitors is associated with reduction of fracture risk in hemodialysis patients. PloS one, 10 (4), e0122691. https://doi.org/10.1371/journal.pone.0122691
You, D., Cochain, C., Loinard, C., Vilar, J., Mees, B., Duriez, M., Lévy, B. I., & Silvestre, J. S. (2008). Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats. The Journal of pharmacology and experimental therapeutics, 325(3), 766–773. https://doi.org/10.1124/jpet.107.131532
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Cassiano Costa Silva Pereira; Natália Manrique; Juliana de Moura; Gabriel Mulinari-Santos; Naara Gabriela Monteiro; Letícia Pitol-Palin; Cristina Antoniali; Roberta Okamoto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.