Sustainability in the use of polyurethane and reuse of shavings

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10685

Keywords:

Polymeric products; Environmental impacts; Waste reuse; Recycling.

Abstract

Polyurethane is one of the largest polymeric products in the plastic family. It is a material produced by a condensation reaction between polyols and isocyanates and can be used in a wide range of applications, which has triggered a marked growth in its use in recent years. It is considered a highly promising and versatile product due to its attractive morphology and wide range of desirable mechanical properties. The great commercial use leads to the generation of waste (shavings), and if not reused or disposed of correctly, this product causes environmental impacts. In this way, we want to evaluate the sustainability in relation to the use of this product and the possible reuse of the shavings. It was found that the main alternatives for shavings disposal are in landfills, incineration, recycling and recovery. The most sustainable option would be the reuse of shavings for the generation of other products. Processes were identified that created new products from waste and are advantageous because they reuse waste that did not owned a correct destination and for generating a source of income.

References

Adema (2014). Panorama du merché du polyuréthane et état de lárt de ses techniques de recyclage. Recuperado de https://www.ademe.fr/sites/default/files/assets/documents/a13473 _1202c0079_etude_polyurethane.pdf

ASTM D5033-00 (2007). Standard Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics (Withdrawn 2007).

Barcelos, R. L., Cubas, A. V., Aguiar, A. R., Silva, L., Leripio, A. A., Magnago, R. F. (2020). Confecção e Avaliação das Propriedades de Placas de Poliuretano com Aproveitamento de Resíduo da Fabricação de Pranchas. 5Th International Workshop | Advances In Cleaner Production – Academic Work, São Paulo, p. 1-10.

Behrendt, G., & Naber, B. W. (2009). The chemical recycling of polyurethanes (review). Journal Of The University Of Chemical Technology And Metallurgy. v. 44, n. 1, p. 3-23.

Cangemi, J. M., Santos, A. M., Claro Neto, S. (2009). Poliuretano: de travesseiros a preservativos, um polímero versátil. Química Nova na Escola. 31, 3, 159-164.

Enderus, N. F., & Tahir, S. M. (2017). Green waste cooking oil-based rigid polyurethane foam. Iop Conference Series: Materials Science and Engineering, [S.L.], v. 271. IOP Publishing. http://dx.doi.org/10.1088/1757-899x/271/1/012062.

Farhan, S., Wang, R., Jiang, H., & Li, K. (2016). Use of waste rigid polyurethane for making carbon foam with fireproofing and anti-ablation properties. Materials & Design, [S.L.], v. 101, p. 332-339. Elsevier BV. http://dx.doi.org/10.1016/j.matdes.2016.04.008.

Fraj, A. B., Kismi, M., & Mounanga, P. (2010). Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Construction And Building Materials, [S.L.], v. 24, n. 6, p. 1069-1077. Elsevier BV. http://dx.doi.org/10.1016/j.conbuildmat.2009.11.010.

Gadea, J., Rodríguez, A., Campos, P. L., Garabito, J., & Calderón, V. (2010). Lightweight mortar made with recycled polyurethane foam. Cement And Concrete Composites, [S.L.], v. 32, n. 9, p. 672-677. Elsevier BV. http://dx.doi.org/10.1016/j.cemconcomp.2010.07.017.

Guolo, E., Cappelletti, F., Romagnoni, P., & Raggiotto, F. (2019). Environmental impacts for polyurethane panels. E3S Web Of Conferences, [S.L.], v. 111. EDP Sciences. http://dx.doi.org/10.1051/e3sconf/201911103063.

H&S (2014). Innovative approach to conversion of flexible PU foam residues into polyol on an industrial scale. Feiplar Composites & Feipur, November 2014, Sao Paulo, Brasil.

Higashi, F., Taguchi, Y., Kokubo, N., & Ohta, H. (1981). Effect of initiation conditions on the direct polycondensation reaction using triphenyl phosphite and pyridine. Journal Of Polymer Science: Polymer Chemistry Edition, [S.L.], v. 19, n. 11, p. 2745-2750. Wiley. http://dx.doi.org/10.1002/pol.1981.170191109.

Isopa (2001). Recycling and Recovery Polyurethanes: Rebonded Flexible Foam. Recuperado de http://www.isopa.org/media/1104/isopafactsheet_recycling_and_recoverypolyurethanes _v02.pdf.

Isopa (2012). Recycling and Recovery Polyurethanes: List of fact sheet references with suggested reading material. Recuperado de https://www.isopa.org/media/2612/list-of-fact-sheet-references-with-suggested-reading-material.pdf.

Kayali, O. (2008). Fly ash lightweight aggregates in high performance concrete. Construction And Building Materials, [S.L.], v. 22, n. 12, p. 2393-2399. Elsevier BV. http://dx.doi.org/10.1016/j.conbuildmat.2007.09.001.

Motokucho, S., Nakayama, Y., Morikawa, H., & Nakatani, H. (2017). Environment-friendly chemical recycling of aliphatic polyurethanes by hydrolysis in a CO2-water system. Journal Of Applied Polymer Science, [S.L.], v. 135, n. 8. Wiley. http://dx.doi.org/10.1002/app.45897.

Moya, C., Domínguez, R., Langenhove, H. V., Herrero, S., Gil, P., Ledón, C., & Dewulf, J. (2013). Exergetic analysis in cane sugar production in combination with Life Cycle. Journal of Cleaner Production. 59, 43-50.

Simón, D., Borreguero, A. M., Lucas, A. de, & Rodríguez, J. F. (2014). Glycolysis of flexible polyurethane wastes containing polymeric polyols. Polymer Degradation And Stability, [S.L.], v. 109, p. 115-121. Elsevier BV. http://dx.doi.org/10.1016/j.polymdegradstab.2014.07.009.

Simón, D., Borreguero, A. M., Lucas, A. de, & Rodríguez, J. F. (2015). Glycolysis of viscoelastic flexible polyurethane foam wastes. Polymer Degradation And Stability, [S.L.], v. 116, p. 23-35. Elsevier BV. http://dx.doi.org/10.1016/j.polymdegradstab.2015.03.008.

Simón, D., Borreguero, A. M., Lucas, A. de, & Rodríguez, J. F. (2018). Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Management, [S.L.], v. 76, p. 147-171. Elsevier BV. http://dx.doi.org/10.1016/j.wasman.2018.03.041.

Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., & Badri, K. H (2018). The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Construction And Building Materials, [S.L.], v. 190, p. 995-1014. Elsevier BV. http://dx.doi.org/10.1016/j.conbuildmat.2018.09.166.

Sulfibra (2020). Placas de Poliuretano PUR. Recuperado de http://www.sulfibra.com.br/produtos.

Tantisattayakul, T., Kanchanapiya, P., Methacanon, P. (2018). Comparative waste management options for rigid polyurethane foam waste in Thailand. Journal Of Cleaner Production, [S.L.], v. 196, p. 1576-1586. Elsevier BV. http://dx.doi.org/10.1016/j.jclepro.2018.06.166.

Thomas, S., Datta, J., Haponiuk, J., & Reghunadhan, A. (2017). Polyurethane Polymers: blends and interpenetrating polymer networks. Amesterdam: Elsevier.

Yang, W., Dong, Q., Liu, S., Xie, H., Liu, L., & Li, J. (2012). Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environmental Sciences, [S.L.], v. 16, p. 167-175. Elsevier BV. http://dx.doi.org/10.1016/j.proenv.2012.10.023.

Published

10/12/2020

How to Cite

GROTTO, A. C.; HEMKEMEIER, M.; ROSSATO, M. V. Sustainability in the use of polyurethane and reuse of shavings. Research, Society and Development, [S. l.], v. 9, n. 11, p. e99891110685, 2020. DOI: 10.33448/rsd-v9i11.10685. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10685. Acesso em: 15 jan. 2025.

Issue

Section

Review Article