Pentose phosphate pathway and phospholipid synthesis as future cancer treatment: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.10984

Keywords:

Glucose-6-phosphate; Metabolism; Neoplasia; Block; Oncogenic therapies.

Abstract

Understanding cell balance and interference with proliferative fate makes the pentose phosphate pathway an essential target in metabolic processes. The objective of this work was to review the scientific journals for indications and reasons to block the pentose phosphate pathway as an alternative practice in the treatment of neoplasia. This review was developed from an exploratory review of articles selected in the database platforms of Latin American and Caribbean Literature in Health Sciences (Lilacs), and Scientific Eletronic Libray Online (SciELO), Medical Literature Analysis and Retrieval System Online (MedLine) and Google Scholar, whose documents are crucial to raise proposals that the theme aims at. The studies reviewed in this article, demonstrated positive results and of great importance for the activity of the pentose phosphate pathway. When thinking about metabolic reprogramming, we obtain a significant link related to cancer, and the mechanisms that cells use to support environments with intense energy needs and the involvement of PPP pathway activity, still need to be better understood, considering that, be positively regulated in cancer and become an attractive target in search of tumor prognosis and define new cancer treatments.

References

Antonio C. C. L. (2013). Produção de material didático alternativo para o ensino de divisão celular (Relatório final). Universidade do Vale do Paraíba, Campos do Jordão, SP.

Cha, Y. J., Jung, W. H., & Koo, J. S. (2017). Differential site-based expression of pentose phosphate pathway-related proteins among breast cancer metastases. Disease Markers, 2017, 1-10. Recovered from https://doi.org/10.1155/2017/7062517

Ghanem, Amer Noorhan. (2020). Therapeutic opportunities in targeting the pentose phosphate pathway in colorectal câncer (Tese). American University of Beirut, Beirut, Lebanon.

Liu, X., Olszewski, K., Zhang, Y., Esther W. Lim, Jiejun Shi, Xiaoshan Zhang, Jie Zhang, Hyemin Lee, Pranavi Koppula, Guang Lei, Li Zhuang, M. James You, Bingliang Fang, Wei Li, Christian M. Metallo, Masha V. Poyurovsky & Boyi Gan. (2020). Regulation of the cystine transporter of pentose phosphate pathway and disulfide stress exposure exposes a target metabolic vulnerability in câncer. Nat Cell Biol, 22, 476-486. Recovered from https://doi.org/10.1038/s41556-020-0496-x

Li, Q., Qin, T., Bi, Z., Huangming Hong, H., Ding, L., Chen, J., Wu, W., Lin, X., Fu, W., Zheng, F., Yao, Y., Luo, M., Saw, P., Wulf, G., Xu, X., Song, E., Yao, h., e Hu, H. (2020). Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nat Commun 11(1456), 1-18. Recovered from https://doi.org/10.1038/s41467-020-15308-7

Lucarelli, G., Galleggiante, V., Rutigliano, M., Sanguedolce, F.,Cagiano, S., Bufo, P., Lastilla G., Maiorano, E., Ribatti, D., Giglio, A., Serino, G., Vavallo, A., Bettocchi, C., Selvaggi, F., Battaglia, M., e Ditonno, P. (2015). Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget, 6(15), 13371-13386. Recovered from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537021/

Marchioro N. R., (2020). Colégio Integrado São Francisco. Recovered from https://www.passeidireto.com/arquivo/82166665/celulas-labeis-estaveis-e-permanentes

Mele, L., Paino F., Papaccio, F., Regad, T., Boocock, D., Stiuso, P., Lombardi, A., Liccardo, D., Aquino, G., Barbieri, A., Arra, C., Coveney, C., La Noce, M., Papaccio, G., Caraglia, M., Tirino, V., e Desiderio, V. (2018). A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death Dis 9, 572. Recovered from https://doi.org/10.1038/s41419-018-0635-5

Mele, L., La Noce, M., Paino, F., Regad, F., Wagner, S., Liccardo, D., Papaccio, G., Lombardi, A., Caraglia, M., Tirino, V., Desiderio, V., e Papaccio, F. (2019). Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation. J Exp Clin Cancer Res 38(160), 1-13. Recovered from https://doi.org/10.1186/s13046-019-1164-5

Nelson, David L., Cox, Michael M. (2014). Princípios de Bioquímica de Lehninger. São Paulo, SP: Artmed.

Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E., & Ghigo, D. (2012). The pentose phosphate pathway: Na antiodant defense and a crossroad in tumor cell fate. Free Radical Biology and Medicine. 53(3), 421–436. Recovered from https://www.sciencedirect.com/science/article/abs/pii/S0891584912002511#

Tsouko, E., Khan, As., White, Ma., Han, JJ., Shi, Y., Merchant, Fa., Sharpe, Ma.,Xin, L., Frigo, De. (2014). Regulation of the pentose phosphate pathway by an androgen receptor–mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 3(103), 1-10. Recovered from https://doi.org/10.1038/oncsis.2014.18

Published

21/12/2020

How to Cite

MARIANO, M. de C. S.; SILVA, M. B. .; LIMA , C. C. de .; SILVA, H. L. R. da; CARVALHO, M. das G. de S. .; ANDRADE, C. U. B. .; OLIVEIRA, W. R. M. .; SOARES, E. A.; LIMA, S. J. F. de; GARCIA, J. A. D. . Pentose phosphate pathway and phospholipid synthesis as future cancer treatment: a systematic review. Research, Society and Development, [S. l.], v. 9, n. 12, p. e25591210984, 2020. DOI: 10.33448/rsd-v9i12.10984. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10984. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences