A dimensionless parametric study on the performance of a single-effect solar still





Solar still; Desalination; Similarity Theory; Dimensional analysis.


Research on the design and operation of solar stills is relatively advanced, but many works have focused only on the description of the individual behavior and operation of experimental apparatus that can be operated under specific experimental or natural conditions. In any case, optimization of the systems requires the correlation of several parameters by means of mathematical modeling, which can be relatively complex. In this work, appropriate global normalization of governing mathematical equations employing dimensionless numbers has been successfully applied for the versatile operation of solar stills. In this novel approach, optimized conditions to design efficient solar stills are presented and discussed. The results also indicated that the generalized dimensionless model could be able of predicting the still performance. The reasons and processes behind the changing trends of the results depend on the simple analysis of the corresponding nondimensional number.


Abu-Hijleh, B. A. (2003). Effect of water emissivity on solar still efficiency. International Journal of Sustainable Energy, 23(1–2), 13–19.

Afrand, M., Kalbasi, R., Karimipour, A., & Wongwises, S. (2016). Experimental investigation on a thermal model for a basin solar still with an external reflector, Energies, 10(18), https://doi.org/10.3390/en10010018.

Agrawal, A., Rana. R. S., & Srivastavaa, P. K. (2017). Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies 3, 466–482.

Agrawal, A., & Rana. R. S. (2019). Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon 5, Issue 4, e01525.

Ahmed, H. M.; & Alfaylakawi, K. A. (2012). Productivity enhancement of conventional solar stills using water sprinklers and cooling fan. Journal of Advanced Science and Engineering Research, 2(3), 168-177.

Ahsan, A.; Imteaz M.; Rahman A.; Yusuf B.; & Fukuhara T. (2012). Design, fabrication and performance analysis of an improved solar still. Desalination, 292, 105-112.

Al-Hayeka, I.; & Badran, O. O. (2004). The effect of using different designs of solar stills on water distillation. Desalination, 169(2), 121-127.

Al-Hinai, H., AL-Nassri, M. S., & Jubran, B. A. (2002). Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion and Management, 43(13), 1639–1650.

Al-Karaghouli, A.; Renne, D.; & Kazmerski, L. L. (2009). Solar and wind opportunities for water desalination in the Arab regions. Renewable and Sustainable Energy Reviews, 13(9), 2397-2407.

Argiriou, A., Lykoudis, S., Kontoyiannidis, S., Balaras, C.A., Asimakopoulos, D., Petrakis, M., & Kassomenos, P. (1999). Comparison of methodologies for TMY generation using 20 years data for Athens, Greece, Solar Energy, 66(1), 33-45.

Arunkumar, T., Jayaprakash R., Denkenberger D., Ahsan A., Okundamiya M. S., Kumar, S., Tanaka H., & Aybar, A. S. (2012). An experimental study on a hemispherical solar still. Desalination, 286, 342-348.

Ayoub, G. M., Al-Hindi, M.; & Malaeb, L. (2015). A solar still desalination system with enhanced productivity. Desalination and water treatment, 53(12), 3179-3186.

Bergman, T. L., A. S., & Lavine, F. P. Incropera (2011). Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Hoboken, NJ, United States.

Buckingham, E. (1914). On physically similar systems: illustrations of the use of dimensional equations, Physical Review, 4, 345–376.

Çengel, Y. A. & Bones, M. A. (2008). Thermodynamics: An Engineering Approach. Boston: McGraw-Hill Higher Education.

Dash, S. K. (2014). Engineering Equation Solver: application to engineering and thermal engineering problems, Oxford, U.K.: Alpha Science International Ltd.

Duffie, J. A. & Beckman, W. A. (1991). Solar Engineering of Thermal Processes, John Wiley and Sons, New York.

Dunkle, R. V. (1961). Solar Water Distillation, the Roof Type Solar Still and Multiple Effect Diffusion Still. Developments in Heat Transfer, ASME, Proceedings of the International Heat Transfer, Part V, University of Colorado, Vol. 895.

Edalatpour, M., Aryana, K., Kianifar, A., Tiwari, G. N., Mahian, O., & Wongwises, S. (2016). Solar stills: A review of the latest developments in numerical simulations, Solar Energy, 135, 897-922.

Elango, C., N. Gunasekarn, & Sampathkumar, K. (2015). Thermal Models of Solar Still – A Comprehensive Review. Renewable and Sustainable Energy Reviews 47: 856–911.

El-Bahi, A.; & Inan, D. (1999). A solar still with minimum inclination, coupled to an outside condenser. Desalination, 123(1), 79-83.

El-Ghonemy, A. M.K. (2012). Water desalination systems powered by renewable energy sources: Review. Renewable and Sustainable Energy Reviews 16, 1537 – 1556.

Elkader, M. A. (1998). An Investigation of the parameters involved in simple solar still with inclined yute. Renewable Energy, 14(1-4), 333-338.

Eze, J. I.; & Ojike, O. (2012). Comparative evaluation of rectangular and pyramid-shaped solar stills using saline water. International Journal of Physical Sciences, 7(31), 5202-5208.

Garg, H. P., & Mann, H. S. (1976). Effect of climatic, operational and design parameters on the year round performance of single-sloped and double sloped solar still under Indian arid zone conditions. Solar Energy, 18(2), 159–163.

Gnanaraj, S. J. P., & Velmurugan, V. (2019). An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still, Desalination, 467, 12-28.

Kalogirou, S. A. (2003). Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus, Renewable Energy, 28(15), 2317-2334.

Karagiannis, I. C.; & Soldatos, P. G. (2008). Water desalination cost literature: review and assessment. Desalination, 223(1-3), 448-456.

Khalifa, A. J. N., & Hamood, A. M. (2009). On the verification of the effect of water depth on the performance of basin type solar stills, Solar Energy, 83(8), 1312-1321.

Kumar, P. V., Kumar, A., Prakash, O., & Kaviti, O. K. (2015). Solar stills system design: A review, Renewable and Sustainable Energy Reviews, 51, 153-181.

Kunes, J. (2012). Dimensionless Physical Quantities in Science and Engineering, Elsevier.

Madhlopa, A., & Johnstone, C. (2009). Model for computation of solar fraction in a single-slope solar still, Solar Energy, 83(6), 873-882.

Martins, F. R., Abreu, S. L., & Pereira, E. B. (2012). Scenarios for solar thermal energy applications in Brazil, Energy Policy, 48, 640-649.

Mashaly, A.F., Alazba, A. A., Al-Awaadh, A. M., & Mattar, M. A. (2015). Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment, Solar Energy, 118, 41-58.

Mohan, I., Yadav, S., Panchal, H., & Brahmbhatt, S. (2019). A review on solar still: a simple desalination technology to obtain potable water, International Journal of Ambient Energy, 40:3, 335-342.

Mowla, D., & Karimi, G. (1995). Mathematical modelling of solar stills in Iran, Solar Energy, 55(5), 389-393.

Muftah, A. F., Alghoul, M. A., Fudholi, A., Abdul-Majeed, M. M., & Sopian, K. (2014). Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews 32, 430–447.

Nguyen, T. B. (2017). Factors affecting the yield of solar distillation systems and measures to improve productivity, Desalination and Water Treatment, 68: 91-98.

Nijmeh, S., Odeh, S., & Akash, B. (2005). Experimental and theoretical study of a single – basin solar still in Jordan, Int. Comm. Heat Mass Transfer, 32, 565- 572.

Omara, Z. M., Kabeel, A. E., & Abdullah, A. S. (2017). A review of solar still performance with reflectors, Renewable and Sustainable Energy Reviews, 68(1), 638-649.

Oresta, P., Verzicco, R., Lohse, D., & Prosperetti, A. (2009). Heat transfer mechanisms in bubbly Rayleigh-Bénard convection. In: Eckhardt B. (eds) Advances in Turbulence XII. Springer Proceedings in Physics, vol 132. Springer, Berlin, Heidelberg.

Phadatare, M. K., & Verma, S. K. (2007). Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination, 217(1–3). 267–275.

Panchal, H. N., & Shah, P. K. (2011). Effect of Varying Glass cover thickness on Performance of Solar still: in a Winter Climate Conditions. International Journal of Renewable Energy Research (IJRER), 1(4), 212-223.

Radhwan, A. M. (2005). Transient performance of a stepped solar still withbuilt-in latent heat thermal energy storage. Desalination, 171(1), 61-76.

Rahbar, N., Esfahani, J. A. & Fotouhi-Bafghi, E. (2015). Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still–CFD simulation and theoretical analysis. Solar Energy, 113, 313-323.

Raj, S. V.; & Manokar, A. M. (2017). Design and Analysis of Solar Still. Materials Today: Proceedings, 4(8), 9179-9185.

Rajan, A. Senthil; Raja, K.; & Marimuthu, P. (2014). Multi basin desalination using biomass heat source and analytical validation using RSM. Energy conversion and management, 87, 359-366.

Rajaseenivasan, T.; & Murugavel, K. K. (2013). Theoretical and experimental investigation on double basin double slope solar still. Desalination, 319, 25-32.

Rajaseenivasan, T.; Raja, P. Nelson; & Srithar, K. (2014). An experimental investigation on a solar still with an integrated flat plate collector. Desalination, 347, 131-137.

Rajvanshi, A. K. (1981). Effect of various dyes on solar distillation. Solar Energy, 27(1), 51–65.

Rashidi, S., Esfahani, J. A., & Rahbar, N. (2017). Partitioning of solar still for performance recovery: Experimental and numerical investigations with cost analysis, Solar Energy, 153, 41-50.

Rufuss, D. D. W., Iniyan, S., Suganthi, L., & Davies, P. A. (2016). Solar stills: A comprehensive review of designs, performance and material advances, Renewable and Sustainable Energy Reviews, 63, 464-496.

Ruzicka, M. C. (2008). On dimensionless numbers, Chemical Engineering Research and Design, 86(8), 835-868.

Sarkar, M. N. I., Sifat, A. I., Reza, S. M. S. et al. (2017). A review of optimum parameter values of a passive solar still and a design for southern Bangladesh. Renewables, 4: 1.

Selvaraj, K., & Natarajan, A. (2018). Factors influencing the performance and productivity of solar stills - A review, Desalination, 435, Pages 181-187.

Shawaqfeh, A. T. & Farid, M. M. (1995). New Development in the Theory of Heat and Mass Transfer in Solar Stills. Solar Energy, 55, 527-535.

Sivakumar, V.; & Sundaram, E. G. (2013). Improvement techniques of solar still efficiency: A review. Renewable and Sustainable Energy Reviews, 28, 246-264.

Tayeb, A. M. (1992). Performance study of some designs of solar stills. Energy conversion and management, 33(9), 889-898.

Tiwari, A. K., & Tiwari, G. N. (2007). Thermal modeling based on solar fraction and experimental study of the annual and seasonal performance of a single slope passive solar still: The effect of water depths. Desalination, 207(1–3), 184–204.

Tiwari, G. N., Dimri, V., & Chel, A. (2009). Parametric study of an active and passive solar distillation system: Energy and exergy analysis, Desalination, 242(1–3), 1-18.

Tiwari, G. N., & Sahota, L. (2017). Advanced Solar-Distillation Systems Basic Principles, Thermal Modeling, and Its Application. SpringerLink.

Tripathi, R., & Tiwari, G. N. (2006). Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Solar Energy, 80(8) 956-967.

Tsilingiris, P. T. (2009). Analysis of the heat and mass transfer processes in solar stills – The validation of a model, Solar Energy, 83(3), 420-431.

Tsilingiris, P. T. (2010). Modelling heat and mass transport phenomena at higher temperatures in solar distillation systems – the Chilton–Colburn analogy. Solar Energy 84, 308–317.

Tsilingiris, P. T. (2011). Prediction and measurements of mass transport in experimental solar stills. Solar Energy 85, 2561–2570.

Tsilingiris, P. T. (2012). Combined heat and mass transfer analyses in solar distillation systems – The restrictive conditions and a validity range investigation. Solar Energy 86, 3288–3300.

Varun RAJ, S., & Manokar, A. M. (2017). Design and Analysis of Solar Still, Materials Today: Proceedings, 4(8), 9179-9185.

Varun, A. K. (2010). Solar stills: A review, Renewable and Sustainable Energy Reviews, 14(1), 446-453.

Velmurugan, V., et al. (2008). Productivity enhancement of stepped solar still: Performance analysis. Thermal Science, 12(3), 153-163.

Velmurugan, V., K., & Srithar, K. (2011). Performance analysis of solar stills based on various factors affecting the productivity - a review, Renew. Sust. Energ. Rev. 15, 1294–1304.

Voropoulos, K., Mathioulakis, E., & Belesiotis, V. (2000). Transport phenomena and dynamic modeling in greenhouse type solar stills. Desalination 129, 273–281.

Welty, J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G. (2007). Fundamentals of Momentum, Heat, and Mass Transfer, (5th ed.), Publisher John Wiley & Son.

Xiao, G., Wang, X., Ni, M., Wang, F., Zhu, W., Luo, Z., & Cen, K. (2013). A review on solar stills for brine desalination, Applied Energy, 103, 642-652.

Yarin, L. P. (2012). The Pi-Theorem: Applications to Fluid Mechanics and Heat and Mass Transfer. Springer-Verlag Berlin Heidelberg.

Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems, Applied Energy, 87(2), 380-389.




How to Cite

SIQUEIRA, A. M. de O.; COLQUE, F. A. . .; SILVA, G. S. .; GURGEL, A. .; CAMPOS, J. C. C. . A dimensionless parametric study on the performance of a single-effect solar still. Research, Society and Development, [S. l.], v. 10, n. 1, p. e26910111304, 2021. DOI: 10.33448/rsd-v10i1.11304. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11304. Acesso em: 19 jan. 2021.