The role of type 2 Diabetes mellitus as a risk factor for Alzheimer's and Parkinson's diseases
DOI:
https://doi.org/10.33448/rsd-v10i1.11673Keywords:
Neurodegeneration; Type 2 diabetes mellitus; Insulin resistance; Oxidative stress; Neuroinflammation; Hyperglycemia; Brain.Abstract
Currently, one of the most significant health problems is the increased incidence of obesity and type 2 Diabetes mellitus (DM2). The most recent epidemiological and clinical research studies have indicated that low physical activity, as well as many genetic and environmental factors are the main causes of these metabolic disorders. It is widely recognized that insulin resistance plays a key role in the development of DM2, disrupting not only the functioning of peripheral tissues, but also the brain. Insulin plays a critical role in the central nervous system participating in neuronal survival, neuroplasticity, memory and cognitive functions. In addition, peripheral insulin resistance results in loss of brain function, which indicates a strong relationship between metabolic disorders, cognitive impairment and the emergence of neurodegenerative diseases. There are links between these different pathologies, such as increased oxidative stress, neuroinflammation, changes in glucose metabolism as well as insulin resistance. Advances in the knowledge of these links may contribute to the development of treatments for the prevention of these pathological events. Based on the above, this study aimed to review the mechanisms associated with DM2 in the development of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases.
References
Ahmad, W., Ijaz, B., Shabbiri, K., Ahmed, F., & Rehman, S. (2017). Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/ RNS generation. Journal of Biomedical Science, 24(1), 1–10. https://doi.org/10.1186/s12929-017-0379-z
Alberdi, E., Sánchez-Gómez, M. V., Cavaliere, F., Pérez-Samartín, A., Zugaza, J. L., Trullas, R., Domercq, M., & Matute, C. (2010). Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47(3), 264–272. https://doi.org/10.1016/j.ceca.2009.12.010
Alfa, R. W., & Kim, S. K. (2016). Using Drosophila to discover mechanisms underlying type 2 diabetes. DMM Disease Models and Mechanisms, 9(4), 365–376. https://doi.org/10.1242/dmm.023887
Álvarez-Rendón, J. P., Salceda, R., & Riesgo-Escovar, J. R. (2018). Drosophila melanogaster as a Model for Diabetes Type 2 Progression. BioMed Research International, 2018. https://doi.org/10.1155/2018/1417528
Alves, L., Correia, A. S. A., Miguel, R., Alegria, P., & Bugalho, P. (2012). Alzheimer’s disease: A clinical practice-oriented review. Frontiers in Neurology, APR(April), 1–20. https://doi.org/10.3389/fneur.2012.00063
Amorim, R. G., Guedes, G. da S., Vasconcelos, S. M. de L., & Santos, J. C. de F. (2019). Kidney disease in diabetes mellitus: Cross-linking between hyperglycemia, redox imbalance and inflammation. Arquivos Brasileiros de Cardiologia, 112(5), 577–587. https://doi.org/10.5935/abc.20190077
Araújo, C. L. de, & Nicoli, J. S. (2010). Uma revisão bibliográfica das principais demências que acometem a população brasileira. Rev. Kairós, 13(1), 231–244. https://doi.org/10.23925/2176-901X.2010v13i1p
Arulmozhi, D. K., Veeranjaneyulu, A., & Bodhankar, S. L. (2004). Neonatal streptozotocin-induced rat model of type 2 diabetes mellitus: A glance. Indian Journal of Pharmacology, 36(4), 217–221.
Athauda, D., & Foltynie, T. (2016). Insulin resistance and Parkinson’s disease: A new target for disease modification? Progress in Neurobiology, 145–146, 98–120. https://doi.org/10.1016/j.pneurobio.2016.10.001
Atkinson, B. J., Griesel, B. A., King, C. D., Josey, M. A., & Olson, A. L. (2013). Moderate glut4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes, 62(7), 2249–2258. https://doi.org/10.2337/db12-1146
Baglietto-Vargas, D., Shi, J., Yaeger, D. M., Ager, R., & LaFerla, F. M. (2016). Diabetes and Alzheimer’s disease crosstalk. Neuroscience and Biobehavioral Reviews, 64, 272–287. https://doi.org/10.1016/j.neubiorev.2016.03.005
Baker, K. D., Loughman, A., Spencer, S. J., & Reichelt, A. C. (2017). The impact of obesity and hypercaloric diet consumption on anxiety and emotional behavior across the lifespan. Neuroscience and Biobehavioral Reviews, 83, 173–182. https://doi.org/10.1016/j.neubiorev.2017.10.014
Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27–42. https://doi.org/10.1111/ene.14108
Balsan, G. A., Da Costa Vieira, J. L., De Oliveira, A. M., & Portal, V. L. (2015). Relationship between adiponectin, obesity and insulin resistance. In Revista da Associacao Medica Brasileira. https://doi.org/10.1590/1806-9282.61.01.072
Barbosa, L. F., De Medeiros, M. H. G., & Augusto, O. (2006). Danos oxidativos e neurodegeneração: O quê aprendemos com animais transgênicos e nocautes? Quimica Nova, 29(6), 1352–1360. https://doi.org/10.1590/S0100-40422006000600034
Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., & Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metabolism, 12(5), 533–544. https://doi.org/10.1016/j.cmet.2010.09.014
Bitel, C. L., Kasinathan, C., Kaswala, R. H., Klein, W. L., & Frederikse, P. H. (2012). Amyloid-β and tau pathology of Alzheimer’s disease induced by diabetes in a RABBIT animal model. Journal of Alzheimer’s Disease, 32(2), 291–305. https://doi.org/10.3233/JAD-2012-120571
Blázquez, E., Velázquez, E., Hurtado-Carneiro, V., & Ruiz-Albusac, J. M. (2014). Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and alzheimer’s disease. Frontiers in Endocrinology, 5(OCT), 1–21. https://doi.org/10.3389/fendo.2014.00161
Braak, H., Del Tredici, K., Rüb, U., De Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211. https://doi.org/10.1016/S0197-4580(02)00065-9
Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615
Calle, M. C., & Fernandez, M. L. (2012). Inflammation and type 2 diabetes. Diabetes and Metabolism, 38(3), 183–191. https://doi.org/10.1016/j.diabet.2011.11.006
Carvalho, E. N. de, Carvalho, N. A. S. de, & Ferreira, L. M. (2003). Experimental model of induction of diabetes mellitus in rats. Acta Cirurgica Brasileira, 18(spe), 60–64. https://doi.org/10.1590/s0102-86502003001100009
Castellani, R. J., Peclovits, A., & Perry, G. (2014). Neuropathology of Alzheimer’s Disease. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms. https://doi.org/10.1016/B978-0-12-386456-7.04604-9
Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14(October 2017), 450–464. https://doi.org/10.1016/j.redox.2017.10.014
Chen, K., Maley, J., & Yu, P. H. (2006). Potential implications of endogenous aldehydes in β-amyloid misfolding, oligomerization and fibrillogenesis. Journal of Neurochemistry, 99(5), 1413–1424. https://doi.org/10.1111/j.1471-4159.2006.04181.x
Chico, L., Simoncini, C., Lo Gerfo, A., Rocchi, A., Petrozzi, L., Carlesi, C., Volpi, L., Tognoni, G., Siciliano, G., & Bonuccelli, U. (2013). Oxidative stress and APO e polymorphisms in Alzheimer’s disease and in mild cognitive impairment. Free Radical Research, 47(8), 569–576. https://doi.org/10.3109/10715762.2013.804622
Choi, Y. G., & Lim, S. (2010). Ne{open}-(carboxymethyl)lysine linkage to α-synuclein and involvement of advanced glycation end products in α-synuclein deposits in an MPTP-intoxicated mouse model. Biochimie, 92(10), 1379–1386. https://doi.org/10.1016/j.biochi.2010.06.025
Choi, Y. H., Kwon, H. S., Shin, S. G., & Chung, C. K. (2014). Vaccinium uliginosum L. improves amyloid β protein-induced learning and memory impairment in Alzheimer’s disease in mice. Preventive Nutrition and Food Science, 19(4), 343–347. https://doi.org/10.3746/pnf.2014.19.4.343
Cobb, C. A., & Cole, M. P. (2015). Oxidative and nitrative stress in neurodegeneration. Neurobiology of Disease, 84, 4–21. https://doi.org/10.1016/j.nbd.2015.04.020
Cole, A. R., Astell, A., Green, C., & Sutherland, C. (2007). Molecular connexions between dementia and diabetes. Neuroscience and Biobehavioral Reviews, 31(7), 1046–1063. https://doi.org/10.1016/j.neubiorev.2007.04.004
Comelli, F., Bettoni, I., Colleoni, M., Giagnoni, G., & Costa, B. (2009). Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytotherapy Research. https://doi.org/10.1002/ptr.2806
Compta, Y., Parkkinen, L., Kempster, P., Selikhova, M., Lashley, T., Holton, J. L., Lees, A. J., & Revesz, T. (2014). The significance of α-synuclein, amyloid-β and tau pathologies in parkinson’s disease progression and related dementia. Neurodegenerative Diseases, 13(2–3), 154–156. https://doi.org/10.1159/000354670
Côté, S., Carmichael, P. H., Verreault, R., Lindsay, J., Lefebvre, J., & Laurin, D. (2012). Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimer’s and Dementia, 8(3), 219–226. https://doi.org/10.1016/j.jalz.2011.03.012
Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., Wait, C., Petrova, A., Latendresse, S., Watson, G. S., Newcomer, J. W., Schellenberg, G. D., & Krohn, A. J. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28(6), 809–822. https://doi.org/10.1016/S0306-4530(02)00087-2
Dalfó, E., Portero-Otín, M., Ayala, V., Martínez, A., Pamplona, R., & Ferrer, I. (2005). Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Journal of Neuropathology and Experimental Neurology, 64(9), 816–830. https://doi.org/10.1097/01.jnen.0000179050.54522.5ª
Damasceno, D. C., Volpato, G. T., De Mattos Paranhos Calderon, I., Aguilar, R., & Rudge, M. V. C. (2004). Effect of Bauhinia forficata extract in diabetic pregnant rats: Maternal repercussions. Phytomedicine, 11(2–3), 196–201. https://doi.org/10.1078/0944-7113-00348
De Felice, F. G., & Ferreira, S. T. (2014). Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer Disease. Diabetes, 63(7), 2262–2272. https://doi.org/10.2337/db13-1954
Delfino, V. D., Figueireso, J. F., Matsuo, T., Favero, maria E., & Mocelin, A. M. M. e A. (2002). Streptozotocin-induced diabetes mellitus: long-term comparison of two drug administration routes. Brazilian Journal of Nephrology (Jornal Brasileiro de Nefrologia), 24(1), 31–36.
Dickson, D. W. (2018). Neuropathology of Parkinson disease. Parkinsonism and Related Disorders, 46, S30–S33. https://doi.org/10.1016/j.parkreldis.2017.07.033
Dineley, K. T., Jahrling, J. B., & Denner, L. (2014). Insulin resistance in Alzheimer’s disease. Neurobiology of Disease, 72(Part A), 92–103. https://doi.org/10.1016/j.nbd.2014.09.001
Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11(2), 98–107. https://doi.org/10.1038/nri2925
Duka, T., Duka, V., Joyce, J. N., & Sidhu, A. (2009). α‐Synuclein contributes to GSK‐3β‐catalyzed Tau phosphorylation in Parkinson’s disease models. The FASEB Journal, 23(9), 2820–2830. https://doi.org/10.1096/fj.08-120410
Faure, P., Troncy, L., Lecomte, M., Wiernsperger, N., Lagarde, M., Ruggiero, D., & Halimi, S. (2005). Albumin antioxidant capacity is modified by methylglyoxal. Diabetes and Metabolism, 31(2), 169–177. https://doi.org/10.1016/S1262-3636(07)70183-0
Ferreira, L. M., & Ferreira, L. R. K. (2003). Experimental model: historic and conceptual revision. Acta Cirurgica Brasileira, 18(spe), 01–03. https://doi.org/10.1590/s0102-86502003001100001
Ferreira, L. M., Hochman, B., & Barbosa, M. V. J. (2005). Modelos experimentais em pesquisa. Acta Cirurgica Brasileira, 20(SUPPL. 2), 28–34. https://doi.org/10.1590/s0102-86502005000800008
Fisher, T. L., & White, M. F. (2004). Signaling pathways: The benefits of good communication. Current Biology, 14(23), 1005–1007. https://doi.org/10.1016/j.cub.2004.11.024
Flor, L. S., & Campos, M. R. (2017). Prevalência de diabetes mellitus e fatores associados na população adulta brasileira: Evidências de um inquérito de base populacional. Revista Brasileira de Epidemiologia, 20(1), 16–29. https://doi.org/10.1590/1980-5497201700010002
Folmer, V., Soares, J. C. M., & Rocha, J. B. T. (2002). Oxidative stress in mice is dependent on the free glucose content of the diet. International Journal of Biochemistry and Cell Biology, 34(10), 1279–1285. https://doi.org/10.1016/S1357-2725(02)00065-1
Francés, D. E., Ingaramo, P. I., Ronco, M. T., & Carnovale, C. E. (2013). Diabetes, an inflammatory process: Oxidative Stress and TNF-alpha involved in hepatic complication. Journal of Biomedical Science and Engineering, 06(06), 645–653. https://doi.org/10.4236/jbise.2013.66079
Furman, B. L. (2015). Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols in Pharmacology. https://doi.org/10.1002/0471141755.ph0547s70
Gao, X., Chen, H., Fung, T. T., Logroscino, G., Schwarzschild, M. A., Hu, F. B., & Ascherio, A. (2007). Prospective study of dietary pattern and risk of Parkinson disease. American Journal of Clinical Nutrition, 86(5), 1486–1494. https://doi.org/10.1093/ajcn/86.5.1486
Gejl, M., Brock, B., Egefjord, L., Vang, K., Rungby, J., & Gjedde, A. (2017). Blood-Brain Glucose Transfer in Alzheimer’s disease: Effect of GLP-1 Analog Treatment. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-17718-y
Ghasemi, R., Haeri, A., Dargahi, L., Mohamed, Z., & Ahmadiani, A. (2013). Insulin in the brain: Sources, localization and functions. Molecular Neurobiology, 47(1), 145–171. https://doi.org/10.1007/s12035-012-8339-9
Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
Gil, A. C. (2002). Como elaborar projetos de pesquisa (4. ed). Atlas. http://www.uece.br/nucleodelinguasitaperi/dmdocuments/gil_como_elaborar_projeto_de_pesquisa.pdf
Gottlieb, M. (2010). Estresse oxidativo como fator de risco cardiometabólico emergente Oxidative stress as an emergent cardiometabolic risk factor. Scientia Medica, 20(3), 243–249.
Gray, S. M., Meijer, R. I., & Barrett, E. J. (2014). Insulin regulates brain function, but how does it get there? Diabetes, 63(12), 3992–3997. https://doi.org/10.2337/db14-0340
Gudala, K., Bansal, D., Schifano, F., & Bhansali, A. (2013). Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. Journal of Diabetes Investigation, 4(6), 640–650. https://doi.org/10.1111/jdi.12087
Hardas, S. S., Sultana, R., Clark, A. M., Beckett, T. L., Szweda, L. I., Paul Murphy, M., & Butterfield, D. A. (2013). Oxidative modification of lipoic acid by HNE in alzheimer disease brain. Redox Biology, 1(1), 80–85. https://doi.org/10.1016/j.redox.2013.01.002
He, Y., Thong, P. S., Lee, T., Leong, S. K., Mao, B. Y., Dong, F., & Watt, F. (2003). Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Radical Biology and Medicine, 35(5), 540–547. https://doi.org/10.1016/S0891-5849(03)00385-X
Heydemann, A. (2016). An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016. https://doi.org/10.1155/2016/2902351
Hochman, B., Ferreira, L. M., Bôas, F. C. V., & Mariano, M. (2004). Experimental model in hamster (Mesocricetus auratus) to study heterologous graft of scars and cutaneous diseases in plastic surgery. Acta Cirurgica Brasileira, 19(suppl 1), 69–78. https://doi.org/10.1590/s0102-86502004000700013
Holtzman, D. M., Morris, J. C., & Goate, A. M. (2011). Science Translational Medicine Volume 3 issue 77 2011 [doi 10.1126%2Fscitranslmed.3002369] Holtzman, D. M.; Morris, J. C.; Goate, A. M. -- Alzheimer’s Disease- The Challenge of the Second Century.pdf. 3(77).
Irwin, D. J., Lee, V. M. Y., & Trojanowski, J. Q. (2013). Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies. Nature Reviews Neuroscience, 14(9), 626–636. https://doi.org/10.1038/nrn3549
Iser, B. P. M., Stopa, S. R., Chueiri, P. S., Szwarcwald, C. L., Malta, D. C., Monteiro, H. O. da C., Duncan, B. B., & Schmidt, M. I. (2015). Prevalência de diabetes autorreferido no Brasil: resultados da Pesquisa Nacional de Saúde 2013. Epidemiologia e Serviços de Saúde, 24(2), 305–314. https://doi.org/10.5123/s1679-49742015000200013
Kandimalla, R., Thirumala, V., & Reddy, P. H. (2017). Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(5), 1078–1089. https://doi.org/10.1016/j.bbadis.2016.08.018
Kang, Y. E., Kim, J. M., Joung, K. H., Lee, J. H., You, B. R., Choi, M. J., Ryu, M. J., Ko, Y. B., Lee, M. A., Lee, J., Ku, B. J., Shong, M., Lee, K. H., & Kim, H. J. (2016). The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS ONE, 11(4), 1–14. https://doi.org/10.1371/journal.pone.0154003
Khasnavis, S., Jana, A., Roy, A., Mazumder, M., Bhushan, B., Wood, T., Ghosh, S., Watson, R., & Pahan, K. (2012). Suppression of nuclear factor-κB activation and inflammation in microglia by physically modified saline. Journal of Biological Chemistry, 287(35), 29529–29542. https://doi.org/10.1074/jbc.M111.338012
Ko, S. Y., Lin, Y. P., Lin, Y. S., & Chang, S. S. (2010). Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radical Biology and Medicine, 49(3), 474–480. https://doi.org/10.1016/j.freeradbiomed.2010.05.005
Koehler, N. K. U., Stransky, E., Shing, M., Gaertner, S., Meyer, M., Schreitmüller, B., Leyhe, T., Laske, C., Maetzler, W., Kahle, P., Celej, M. S., Jovin, T. M., Fallgatter, A. J., Batra, A., Buchkremer, G., Schott, K., & Richartz-Salzburger, E. (2013). Altered Serum IgG Levels to α-Synuclein in Dementia with Lewy Bodies and Alzheimer’s Disease. PLoS ONE, 8(5), 1–7. https://doi.org/10.1371/journal.pone.0064649
Lee, D., Park, C. W., Paik, S. R., & Choi, K. Y. (2009). The modification of α-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochimica et Biophysica Acta - Proteins and Proteomics, 1794(3), 421–430. https://doi.org/10.1016/j.bbapap.2008.11.016
Letra, L., Santana, I., & Seiça, R. (2014). Obesity as a risk factor for Alzheimer’s disease: the role of adipocytokines. Metabolic Brain Disease, 29(3), 563–568. https://doi.org/10.1007/s11011-014-9501-z
Li, J., Liu, D., Sun, L., Lu, Y., & Zhang, Z. (2012). Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. Journal of the Neurological Sciences, 317(1–2), 1–5. https://doi.org/10.1016/j.jns.2012.02.018
Li, X., Song, D., & Leng, S. X. (2015). Link between type 2 diabetes and Alzheimer’s disease: From epidemiology to mechanism and treatment. Clinical Interventions in Aging, 10, 549–560. https://doi.org/10.2147/CIA.S74042
Lizcano, J. M., & Alessi, D. R. (2002). The insulin signalling pathway. Current Biology, 12(7), 236–238. https://doi.org/10.1016/S0960-9822(02)00777-7
Macauley-Rambach, S., Stanley, M., Yamada, S., Caesar, E., Raichle, M., Perez, R., Mahan, T., & Holtzman, D. (2015). Hyperglycemia modulates extracellular amyloid-beta levels and neuronal activity in vivo. Neurodegenerative Diseases, 15, 570. https://doi.org/10.1172/JCI79742DS1
Maciejczyk, M., Żebrowska, E., & Chabowski, A. (2019). Insulin resistance and oxidative stress in the brain: What’s new? International Journal of Molecular Sciences, 20(4). https://doi.org/10.3390/ijms20040874
Mandrekar-Colucci, S., & Landreth, G. E. (2012). Microglia and Inflammation in Alzheimers Disease. CNS & Neurological Disorders - Drug Targets. https://doi.org/10.2174/187152710791012071
Marques-Lopes, I., Marti, A., Moreno-Aliaga, M. J., & Martínez, A. (2004). Aspectos genéticos da obesidade. Revista de Nutricao, 17(3), 327–338. https://doi.org/10.1590/s1415-52732004000300006
Mattsson, N., Insel, P., Tosun, D., Zhang, J., Jack, C. R., Galasko, D., & Weiner, M. (2013). Effects of baseline CSF α-synuclein on regional brain atrophy rates in healthy elders, mild cognitive impairment and Alzheimer’s disease. PLoS ONE, 8(12), 1–9. https://doi.org/10.1371/journal.pone.0085443
Mochizuki, H., & Yasuda, T. (2012). Iron accumulation in Parkinson’s disease. Journal of Neural Transmission, 119(12), 1511–1514. https://doi.org/10.1007/s00702-012-0905-9
Montufar, S., Calero, C., Vinueza, R., Correa, P., Carrera-Gonzalez, A., Villegas, F., Moreta, G., & Paredes, R. (2017). Association between the APOE ϵ 4 Allele and Late-Onset Alzheimer’s Disease in an Ecuadorian Mestizo Population. International Journal of Alzheimer’s Disease. https://doi.org/10.1155/2017/1059678
Morita, M., Ikeshima-Kataoka, H., Kreft, M., Vardjan, N., Zorec, R., & Noda, M. (2019). Metabolic plasticity of astrocytes and aging of the brain. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20040941
Morris, J. K., Bomhoff, G. L., Stanford, J. A., & Geiger, P. C. (2010). Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 299(4), 1–3. https://doi.org/10.1152/ajpregu.00449.2010
Morris, S. N. S., Coogan, C., Chamseddin, K., Fernandez-Kim, S. O., Kolli, S., Keller, J. N., & Bauer, J. H. (2012). Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochimica et Biophysica Acta - Molecular Basis of Disease. https://doi.org/10.1016/j.bbadis.2012.04.012
Münzberg, H., & Myers, M. G. (2005). Molecular and anatomical determinants of central leptin resistance. Nature Neuroscience, 8(5), 566–570. https://doi.org/10.1038/nn1454
Murphy, M. P., & Levine, H. (2010). Alzheimer’s Disease and the Beta-Amyloid Peptide. Journal of Alzheimer’s Disease, 19(1), 1–17. https://doi.org/10.3233/JAD-2010-1221.Alzheimer
Nandi, A., Kitamura, Y., Kahn, C. R., & Accili, D. (2004). Mouse Models of Insulin Resistance. Physiological Reviews, 84(2), 623–647. https://doi.org/10.1152/physrev.00032.2003
Nelson, P. T., & Schmitt, F. A. (2011). Age Number One Factor of Alzheimer’S Disease. Acta Neuropathol, 121(5), 571–587. https://doi.org/10.1007/s00401-011-0826-y.Alzheimer
Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43(2), 289–330. https://doi.org/10.1385/CBB:43:2:289
Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 5(1), 194–222. https://doi.org/10.3390/biom5010194
Pardeshi, R., Bolshette, N., Gadhave, K., Ahire, A., Ahmed, S., Cassano, T., Gupta, V. B., & Lahkar, M. (2017). Insulin signaling: An opportunistic target to minify risk of Alzheimer’s disease. Psychoneuroendocrinology, 83, 159–171. https://doi.org/10.1016/j.psyneuen.2017.05.004
Park, S., Alfa, R. W., Topper, S. M., Kim, G. E. S., Kockel, L., & Kim, S. K. (2014). A Genetic Strategy to Measure Circulating Drosophila Insulin Reveals Genes Regulating Insulin Production and Secretion. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1004555
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Perfeito, R., Cunha-Oliveira, T., & Rego, A. C. (2012). Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease - Resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology and Medicine, 53(9), 1791–1806.
https://doi.org/10.1016/j.freeradbiomed.2012.08.569
Perrotta, F., Nigro, E., Mollica, M., Costigliola, A., D’agnano, V., Daniele, A., Bianco, A., & Guerra, G. (2019). Pulmonary hypertension and obesity: Focus on adiponectin. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20040912
Pham, J. D., Chim, N., Goulding, C. W., & Nowick, J. S. (2013). Structures of oligomers of a peptide from β-amyloid. Journal of the American Chemical Society, 135(33), 12460–12467. https://doi.org/10.1021/ja4068854
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
Pitocco, D., Zaccardi, F., Di Stasio, E., Romitelli, F., Santini, S. A., Zuppi, C., & Ghirlanda, G. (2010). Oxidative stress, nitric oxide, and diabetes. Review of Diabetic Studies, 7(1), 15–25. https://doi.org/10.1900/RDS.2010.7.15
Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3, 1–21. https://doi.org/10.1038/nrdp.2017.13
Poirier, J., Miron, J., Picard, C., Gormley, P., Théroux, L., Breitner, J., & Dea, D. (2014). Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiology of Aging, 35(SUPPL.2), S3–S10. https://doi.org/10.1016/j.neurobiolaging.2014.03.037
Prado, I. O. do, Goulart, A. da S., Viçosa, D. L., Folmer, V., & Salgueiro, A. C. F. (2020). Efeitos metabólicos da infusão das folhas de Bauhinia forficata em Drosophila melanogaster alimentadas com uma dieta rica em sacarose. Research, Society and Development. https://doi.org/10.33448/rsd-v9i3.2377
Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia, 9(1), 63-75.e2. https://doi.org/10.1016/j.jalz.2012.11.007
Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. L. (2014). The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Movement Disorders, 29(13), 1583–1590. https://doi.org/10.1002/mds.25945
Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer’s Disease, 42, S125–S152. https://doi.org/10.3233/JAD-132738
Ramkumar, K. M., Vanitha, P., Uma, C., Suganya, N., Bhakkiyalakshmi, E., & Sujatha, J. (2011). Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49(12), 3390–3394. https://doi.org/10.1016/j.fct.2011.09.027
Reagan, L. P. (2012). Diabetes as a chronic metabolic stressor: Causes, consequences and clinical complications. Experimental Neurology, 233(1), 68–78. https://doi.org/10.1016/j.expneurol.2011.02.004
Reddy, P. H. (2011). Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Research, 1415, 136–148. https://doi.org/10.1016/j.brainres.2011.07.052
Rees, K., Stowe, R., Patel, S., Ives, N., Breen, K., Ben-Shlomo, Y., & Clarke, C. E. (2011). Anti-hypertensive drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies and clinical trials. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd008535.pub2
Ribeiro Cesaretti, M. L., & Kohlmann, O. (2006). Modelos experimentais de resistência à insulina e obesidade: Lições aprendidas. Arquivos Brasileiros de Endocrinologia e Metabologia, 50(2), 190–197. https://doi.org/10.1590/S0004-27302006000200005
Rohilla, A., & Ali, S. (2012). Alloxan Induced Diabetes : Mechanisms and Effects. International Journal of Research in Pharmaceutical and Biomedical Science.
Salgueiro, Andréia C.F., Leal, C. Q., Bianchini, M. C., Prado, I. O., Mendez, A. S. L., Puntel, R. L., Folmer, V., Soares, F. A., Ávila, D. S., & Puntel, G. O. (2013). The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations. Journal of Ethnopharmacology, 148(1), 81–87. https://doi.org/10.1016/j.jep.2013.03.070
Salgueiro, Andréia Caroline Fernandes, Folmer, V., Da Silva, M. P., Mendez, A. S. L., Zemolin, A. P. P., Posser, T., Franco, J. L., Puntel, R. L., & Puntel, G. O. (2016). Effects of Bauhinia forficata tea on oxidative stress and liver damage in diabetic mice. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/8902954
Sato, T., Shimogaito, N., Wu, X., Kikuchi, S., Yamagishi, S. I., & Takeuchi, M. (2006). Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 21(3), 197–208. https://doi.org/10.1177/1533317506289277
Schernhammer, E., Hansen, J., Rugbjerg, K., Wermuth, L., & Ritz, B. (2011). Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care, 34(5), 1102–1108. https://doi.org/10.2337/dc10-1333
Schildknecht, S., Gerding, H. R., Karreman, C., Drescher, M., Lashuel, H. A., Outeiro, T. F., Di Monte, D. A., & Leist, M. (2013). Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: Implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 125(4), 491–511. https://doi.org/10.1111/jnc.12226
Seino, Y., Nanjo, K., Tajima, N., Kadowaki, T., Kashiwagi, A., Araki, E., Ito, C., Inagaki, N., Iwamoto, Y., Kasuga, M., Hanafusa, T., Haneda, M., & Ueki, K. (2010). Report of the Committee on the classification and diagnostic criteria of diabetes mellitus: The Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus. Diabetology International, 1(1), 2–20. https://doi.org/10.1007/s13340-010-0006-7
Sekiyama, K., Sugama, S., Fujita, M., Sekigawa, A., Takamatsu, Y., Waragai, M., Takenouchi, T., & Hashimoto, M. (2012). Neuroinflammation in Parkinson’s disease and related disorders: A lesson from genetically manipulated mouse models of α-synucleinopathies. Parkinson’s Disease, 2012. https://doi.org/10.1155/2012/271732
Silva, M., de Lima, W. G., & Pedrosa, M. E. S. L. (2011). Efeito da estreptozotocina sobre os perfis glicêmico e lipídico e o estresse oxidativo em hamsters. Arquivos Brasileiros de Endocrinologia e Metabologia, 55(1), 46–53. https://doi.org/10.1590/S0004-27302011000100006
Sims-robinson, C., Kim, B., Rosko, A., & Feldman, E. L. (2011). 1-19 diabetes accelerate Alzheimer disease pathology. 6(10), 551–559. https://doi.org/10.1038/nrneurol.2010.130.How
Srinivasan, K., & Ramarao, P. (2012). Animal models in type 2 diabetes research: An overview K. Indian Journal of Medical Research, 136(1), 451–472.
Sun, X., Jin, L., Ling, P., & Ling, P. (2011). Review of drugs for Alzheimer’s disease. Drug Discoveries & Therapeutics, 6(6), 285–290. https://doi.org/10.5582/ddt.2012.v6.6.285
Szablewski, L. (2017). Glucose Transporters in Brain: In Health and in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55(4), 1307–1320. https://doi.org/10.3233/JAD-160841
Timper, K., & Donath, M. Y. (2012). Diabetes mellitus Type 2 - The new face of an old lady. Swiss Medical Weekly, 142(JULY). https://doi.org/10.4414/smw.2012.13635
Tsang, A. H. K., & Chung, K. K. K. (2009). Oxidative and nitrosative stress in Parkinson’s disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1792(7), 643–650. https://doi.org/10.1016/j.bbadis.2008.12.006
Tumminia, A., Vinciguerra, F., Parisi, M., & Frittitta, L. (2018). Type 2 diabetes mellitus and alzheimer’s disease: Role of insulin signalling and therapeutic implications. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113306
Tuon, T. (2012). O papel do estresse oxidativo e do exercício físico na doença de Parkinson. Revista Brasileira de Fisiologia Do Exercício, 11(3), 174. https://doi.org/10.33233/rbfe.v11i3.3403
Vicente Miranda, H., El-Agnaf, O. M. A., & Outeiro, T. F. (2016). Glycation in Parkinson’s disease and Alzheimer’s disease. Movement Disorders, 31(6), 782–790. https://doi.org/10.1002/mds.26566
Wang, L., Zhang, X. T., Zhang, H. Y., Yao, H. Y., & Zhang, H. (2010). Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice. Journal of Ethnopharmacology, 130(3), 465–469. https://doi.org/10.1016/j.jep.2010.05.031
White, P. A. S., Cercato, L. M., Araújo, J. M. D., Souza, L. A., Soares, A. F., Barbosa, A. P. O., Neto, J. M. d. R., Marçal, A. C., Machado, U. F., Camargo, E. A., Santos, M. R. V., & Brito, L. C. (2013). Modelo de obesidade induzida por dieta hiperlipídica e associada à resistência à ação da insulina e intolerância à glicose. Arquivos Brasileiros de Endocrinologia e Metabologia, 57(5), 339–345. https://doi.org/10.1590/S0004-27302013000500002
Wolkow, C. A., Muñoz, M. J., Riddle, D. L., & Ruvkun, G. (2002). Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M207866200
Woltjer, R. L., Maezawa, I., Ou, J. J., Montine, K. S., & Montine, T. J. (2003). Advanced glycation endproduct precursor alters intracellular amyloid- β/AβPP carboxy-terminal fragment aggregation and cytotoxicity. Journal of Alzheimer’s Disease, 5(6), 467–476. https://doi.org/10.3233/jad-2003-5607
Zhao, W., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., Krafft, G. A., & Klein, W. L. (2008). Amyloid beta oligomers induce impairment of neuronal insulin receptors. The FASEB Journal, 22(1), 246–260. https://doi.org/10.1096/fj.06-7703com
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Kellen Mariane Athaide Rocha; Aline da Silva Goulart; Márcio Tavares Costa; Andréia Caroline Fernandes Salgueiro; Vanderlei Folmer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.