The role of type 2 Diabetes mellitus as a risk factor for Alzheimer's and Parkinson's diseases




Neurodegeneration; Type 2 diabetes mellitus; Insulin resistance; Oxidative stress; Neuroinflammation; Hyperglycemia; Brain.


Currently, one of the most significant health problems is the increased incidence of obesity and type 2 Diabetes mellitus (DM2). The most recent epidemiological and clinical research studies have indicated that low physical activity, as well as many genetic and environmental factors are the main causes of these metabolic disorders. It is widely recognized that insulin resistance plays a key role in the development of DM2, disrupting not only the functioning of peripheral tissues, but also the brain. Insulin plays a critical role in the central nervous system participating in neuronal survival, neuroplasticity, memory and cognitive functions. In addition, peripheral insulin resistance results in loss of brain function, which indicates a strong relationship between metabolic disorders, cognitive impairment and the emergence of neurodegenerative diseases. There are links between these different pathologies, such as increased oxidative stress, neuroinflammation, changes in glucose metabolism as well as insulin resistance. Advances in the knowledge of these links may contribute to the development of treatments for the prevention of these pathological events. Based on the above, this study aimed to review the mechanisms associated with DM2 in the development of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases.


Ahmad, W., Ijaz, B., Shabbiri, K., Ahmed, F., & Rehman, S. (2017). Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/ RNS generation. Journal of Biomedical Science, 24(1), 1–10.

Alberdi, E., Sánchez-Gómez, M. V., Cavaliere, F., Pérez-Samartín, A., Zugaza, J. L., Trullas, R., Domercq, M., & Matute, C. (2010). Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47(3), 264–272.

Alfa, R. W., & Kim, S. K. (2016). Using Drosophila to discover mechanisms underlying type 2 diabetes. DMM Disease Models and Mechanisms, 9(4), 365–376.

Álvarez-Rendón, J. P., Salceda, R., & Riesgo-Escovar, J. R. (2018). Drosophila melanogaster as a Model for Diabetes Type 2 Progression. BioMed Research International, 2018.

Alves, L., Correia, A. S. A., Miguel, R., Alegria, P., & Bugalho, P. (2012). Alzheimer’s disease: A clinical practice-oriented review. Frontiers in Neurology, APR(April), 1–20.

Amorim, R. G., Guedes, G. da S., Vasconcelos, S. M. de L., & Santos, J. C. de F. (2019). Kidney disease in diabetes mellitus: Cross-linking between hyperglycemia, redox imbalance and inflammation. Arquivos Brasileiros de Cardiologia, 112(5), 577–587.

Araújo, C. L. de, & Nicoli, J. S. (2010). Uma revisão bibliográfica das principais demências que acometem a população brasileira. Rev. Kairós, 13(1), 231–244.

Arulmozhi, D. K., Veeranjaneyulu, A., & Bodhankar, S. L. (2004). Neonatal streptozotocin-induced rat model of type 2 diabetes mellitus: A glance. Indian Journal of Pharmacology, 36(4), 217–221.

Athauda, D., & Foltynie, T. (2016). Insulin resistance and Parkinson’s disease: A new target for disease modification? Progress in Neurobiology, 145–146, 98–120.

Atkinson, B. J., Griesel, B. A., King, C. D., Josey, M. A., & Olson, A. L. (2013). Moderate glut4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes, 62(7), 2249–2258.

Baglietto-Vargas, D., Shi, J., Yaeger, D. M., Ager, R., & LaFerla, F. M. (2016). Diabetes and Alzheimer’s disease crosstalk. Neuroscience and Biobehavioral Reviews, 64, 272–287.

Baker, K. D., Loughman, A., Spencer, S. J., & Reichelt, A. C. (2017). The impact of obesity and hypercaloric diet consumption on anxiety and emotional behavior across the lifespan. Neuroscience and Biobehavioral Reviews, 83, 173–182.

Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27–42.

Balsan, G. A., Da Costa Vieira, J. L., De Oliveira, A. M., & Portal, V. L. (2015). Relationship between adiponectin, obesity and insulin resistance. In Revista da Associacao Medica Brasileira.

Barbosa, L. F., De Medeiros, M. H. G., & Augusto, O. (2006). Danos oxidativos e neurodegeneração: O quê aprendemos com animais transgênicos e nocautes? Quimica Nova, 29(6), 1352–1360.

Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., & Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metabolism, 12(5), 533–544.

Bitel, C. L., Kasinathan, C., Kaswala, R. H., Klein, W. L., & Frederikse, P. H. (2012). Amyloid-β and tau pathology of Alzheimer’s disease induced by diabetes in a RABBIT animal model. Journal of Alzheimer’s Disease, 32(2), 291–305.

Blázquez, E., Velázquez, E., Hurtado-Carneiro, V., & Ruiz-Albusac, J. M. (2014). Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and alzheimer’s disease. Frontiers in Endocrinology, 5(OCT), 1–21.

Braak, H., Del Tredici, K., Rüb, U., De Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211.

Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625.

Calle, M. C., & Fernandez, M. L. (2012). Inflammation and type 2 diabetes. Diabetes and Metabolism, 38(3), 183–191.

Carvalho, E. N. de, Carvalho, N. A. S. de, & Ferreira, L. M. (2003). Experimental model of induction of diabetes mellitus in rats. Acta Cirurgica Brasileira, 18(spe), 60–64.

Castellani, R. J., Peclovits, A., & Perry, G. (2014). Neuropathology of Alzheimer’s Disease. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms.

Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14(October 2017), 450–464.

Chen, K., Maley, J., & Yu, P. H. (2006). Potential implications of endogenous aldehydes in β-amyloid misfolding, oligomerization and fibrillogenesis. Journal of Neurochemistry, 99(5), 1413–1424.

Chico, L., Simoncini, C., Lo Gerfo, A., Rocchi, A., Petrozzi, L., Carlesi, C., Volpi, L., Tognoni, G., Siciliano, G., & Bonuccelli, U. (2013). Oxidative stress and APO e polymorphisms in Alzheimer’s disease and in mild cognitive impairment. Free Radical Research, 47(8), 569–576.

Choi, Y. G., & Lim, S. (2010). Ne{open}-(carboxymethyl)lysine linkage to α-synuclein and involvement of advanced glycation end products in α-synuclein deposits in an MPTP-intoxicated mouse model. Biochimie, 92(10), 1379–1386.

Choi, Y. H., Kwon, H. S., Shin, S. G., & Chung, C. K. (2014). Vaccinium uliginosum L. improves amyloid β protein-induced learning and memory impairment in Alzheimer’s disease in mice. Preventive Nutrition and Food Science, 19(4), 343–347.

Cobb, C. A., & Cole, M. P. (2015). Oxidative and nitrative stress in neurodegeneration. Neurobiology of Disease, 84, 4–21.

Cole, A. R., Astell, A., Green, C., & Sutherland, C. (2007). Molecular connexions between dementia and diabetes. Neuroscience and Biobehavioral Reviews, 31(7), 1046–1063.

Comelli, F., Bettoni, I., Colleoni, M., Giagnoni, G., & Costa, B. (2009). Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytotherapy Research.

Compta, Y., Parkkinen, L., Kempster, P., Selikhova, M., Lashley, T., Holton, J. L., Lees, A. J., & Revesz, T. (2014). The significance of α-synuclein, amyloid-β and tau pathologies in parkinson’s disease progression and related dementia. Neurodegenerative Diseases, 13(2–3), 154–156.

Côté, S., Carmichael, P. H., Verreault, R., Lindsay, J., Lefebvre, J., & Laurin, D. (2012). Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimer’s and Dementia, 8(3), 219–226.

Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., Wait, C., Petrova, A., Latendresse, S., Watson, G. S., Newcomer, J. W., Schellenberg, G. D., & Krohn, A. J. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28(6), 809–822.

Dalfó, E., Portero-Otín, M., Ayala, V., Martínez, A., Pamplona, R., & Ferrer, I. (2005). Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Journal of Neuropathology and Experimental Neurology, 64(9), 816–830.ª

Damasceno, D. C., Volpato, G. T., De Mattos Paranhos Calderon, I., Aguilar, R., & Rudge, M. V. C. (2004). Effect of Bauhinia forficata extract in diabetic pregnant rats: Maternal repercussions. Phytomedicine, 11(2–3), 196–201.

De Felice, F. G., & Ferreira, S. T. (2014). Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer Disease. Diabetes, 63(7), 2262–2272.

Delfino, V. D., Figueireso, J. F., Matsuo, T., Favero, maria E., & Mocelin, A. M. M. e A. (2002). Streptozotocin-induced diabetes mellitus: long-term comparison of two drug administration routes. Brazilian Journal of Nephrology (Jornal Brasileiro de Nefrologia), 24(1), 31–36.

Dickson, D. W. (2018). Neuropathology of Parkinson disease. Parkinsonism and Related Disorders, 46, S30–S33.

Dineley, K. T., Jahrling, J. B., & Denner, L. (2014). Insulin resistance in Alzheimer’s disease. Neurobiology of Disease, 72(Part A), 92–103.

Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11(2), 98–107.

Duka, T., Duka, V., Joyce, J. N., & Sidhu, A. (2009). α‐Synuclein contributes to GSK‐3β‐catalyzed Tau phosphorylation in Parkinson’s disease models. The FASEB Journal, 23(9), 2820–2830.

Faure, P., Troncy, L., Lecomte, M., Wiernsperger, N., Lagarde, M., Ruggiero, D., & Halimi, S. (2005). Albumin antioxidant capacity is modified by methylglyoxal. Diabetes and Metabolism, 31(2), 169–177.

Ferreira, L. M., & Ferreira, L. R. K. (2003). Experimental model: historic and conceptual revision. Acta Cirurgica Brasileira, 18(spe), 01–03.

Ferreira, L. M., Hochman, B., & Barbosa, M. V. J. (2005). Modelos experimentais em pesquisa. Acta Cirurgica Brasileira, 20(SUPPL. 2), 28–34.

Fisher, T. L., & White, M. F. (2004). Signaling pathways: The benefits of good communication. Current Biology, 14(23), 1005–1007.

Flor, L. S., & Campos, M. R. (2017). Prevalência de diabetes mellitus e fatores associados na população adulta brasileira: Evidências de um inquérito de base populacional. Revista Brasileira de Epidemiologia, 20(1), 16–29.

Folmer, V., Soares, J. C. M., & Rocha, J. B. T. (2002). Oxidative stress in mice is dependent on the free glucose content of the diet. International Journal of Biochemistry and Cell Biology, 34(10), 1279–1285.

Francés, D. E., Ingaramo, P. I., Ronco, M. T., & Carnovale, C. E. (2013). Diabetes, an inflammatory process: Oxidative Stress and TNF-alpha involved in hepatic complication. Journal of Biomedical Science and Engineering, 06(06), 645–653.

Furman, B. L. (2015). Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols in Pharmacology.

Gao, X., Chen, H., Fung, T. T., Logroscino, G., Schwarzschild, M. A., Hu, F. B., & Ascherio, A. (2007). Prospective study of dietary pattern and risk of Parkinson disease. American Journal of Clinical Nutrition, 86(5), 1486–1494.

Gejl, M., Brock, B., Egefjord, L., Vang, K., Rungby, J., & Gjedde, A. (2017). Blood-Brain Glucose Transfer in Alzheimer’s disease: Effect of GLP-1 Analog Treatment. Scientific Reports, 7(1), 1–10.

Ghasemi, R., Haeri, A., Dargahi, L., Mohamed, Z., & Ahmadiani, A. (2013). Insulin in the brain: Sources, localization and functions. Molecular Neurobiology, 47(1), 145–171.

Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.

Gil, A. C. (2002). Como elaborar projetos de pesquisa (4. ed). Atlas.

Gottlieb, M. (2010). Estresse oxidativo como fator de risco cardiometabólico emergente Oxidative stress as an emergent cardiometabolic risk factor. Scientia Medica, 20(3), 243–249.

Gray, S. M., Meijer, R. I., & Barrett, E. J. (2014). Insulin regulates brain function, but how does it get there? Diabetes, 63(12), 3992–3997.

Gudala, K., Bansal, D., Schifano, F., & Bhansali, A. (2013). Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. Journal of Diabetes Investigation, 4(6), 640–650.

Hardas, S. S., Sultana, R., Clark, A. M., Beckett, T. L., Szweda, L. I., Paul Murphy, M., & Butterfield, D. A. (2013). Oxidative modification of lipoic acid by HNE in alzheimer disease brain. Redox Biology, 1(1), 80–85.

He, Y., Thong, P. S., Lee, T., Leong, S. K., Mao, B. Y., Dong, F., & Watt, F. (2003). Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Radical Biology and Medicine, 35(5), 540–547.

Heydemann, A. (2016). An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016.

Hochman, B., Ferreira, L. M., Bôas, F. C. V., & Mariano, M. (2004). Experimental model in hamster (Mesocricetus auratus) to study heterologous graft of scars and cutaneous diseases in plastic surgery. Acta Cirurgica Brasileira, 19(suppl 1), 69–78.

Holtzman, D. M., Morris, J. C., & Goate, A. M. (2011). Science Translational Medicine Volume 3 issue 77 2011 [doi 10.1126%2Fscitranslmed.3002369] Holtzman, D. M.; Morris, J. C.; Goate, A. M. -- Alzheimer’s Disease- The Challenge of the Second Century.pdf. 3(77).

Irwin, D. J., Lee, V. M. Y., & Trojanowski, J. Q. (2013). Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies. Nature Reviews Neuroscience, 14(9), 626–636.

Iser, B. P. M., Stopa, S. R., Chueiri, P. S., Szwarcwald, C. L., Malta, D. C., Monteiro, H. O. da C., Duncan, B. B., & Schmidt, M. I. (2015). Prevalência de diabetes autorreferido no Brasil: resultados da Pesquisa Nacional de Saúde 2013. Epidemiologia e Serviços de Saúde, 24(2), 305–314.

Kandimalla, R., Thirumala, V., & Reddy, P. H. (2017). Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(5), 1078–1089.

Kang, Y. E., Kim, J. M., Joung, K. H., Lee, J. H., You, B. R., Choi, M. J., Ryu, M. J., Ko, Y. B., Lee, M. A., Lee, J., Ku, B. J., Shong, M., Lee, K. H., & Kim, H. J. (2016). The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS ONE, 11(4), 1–14.

Khasnavis, S., Jana, A., Roy, A., Mazumder, M., Bhushan, B., Wood, T., Ghosh, S., Watson, R., & Pahan, K. (2012). Suppression of nuclear factor-κB activation and inflammation in microglia by physically modified saline. Journal of Biological Chemistry, 287(35), 29529–29542.

Ko, S. Y., Lin, Y. P., Lin, Y. S., & Chang, S. S. (2010). Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radical Biology and Medicine, 49(3), 474–480.

Koehler, N. K. U., Stransky, E., Shing, M., Gaertner, S., Meyer, M., Schreitmüller, B., Leyhe, T., Laske, C., Maetzler, W., Kahle, P., Celej, M. S., Jovin, T. M., Fallgatter, A. J., Batra, A., Buchkremer, G., Schott, K., & Richartz-Salzburger, E. (2013). Altered Serum IgG Levels to α-Synuclein in Dementia with Lewy Bodies and Alzheimer’s Disease. PLoS ONE, 8(5), 1–7.

Lee, D., Park, C. W., Paik, S. R., & Choi, K. Y. (2009). The modification of α-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochimica et Biophysica Acta - Proteins and Proteomics, 1794(3), 421–430.

Letra, L., Santana, I., & Seiça, R. (2014). Obesity as a risk factor for Alzheimer’s disease: the role of adipocytokines. Metabolic Brain Disease, 29(3), 563–568.

Li, J., Liu, D., Sun, L., Lu, Y., & Zhang, Z. (2012). Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. Journal of the Neurological Sciences, 317(1–2), 1–5.

Li, X., Song, D., & Leng, S. X. (2015). Link between type 2 diabetes and Alzheimer’s disease: From epidemiology to mechanism and treatment. Clinical Interventions in Aging, 10, 549–560.

Lizcano, J. M., & Alessi, D. R. (2002). The insulin signalling pathway. Current Biology, 12(7), 236–238.

Macauley-Rambach, S., Stanley, M., Yamada, S., Caesar, E., Raichle, M., Perez, R., Mahan, T., & Holtzman, D. (2015). Hyperglycemia modulates extracellular amyloid-beta levels and neuronal activity in vivo. Neurodegenerative Diseases, 15, 570.

Maciejczyk, M., Żebrowska, E., & Chabowski, A. (2019). Insulin resistance and oxidative stress in the brain: What’s new? International Journal of Molecular Sciences, 20(4).

Mandrekar-Colucci, S., & Landreth, G. E. (2012). Microglia and Inflammation in Alzheimers Disease. CNS & Neurological Disorders - Drug Targets.

Marques-Lopes, I., Marti, A., Moreno-Aliaga, M. J., & Martínez, A. (2004). Aspectos genéticos da obesidade. Revista de Nutricao, 17(3), 327–338.

Mattsson, N., Insel, P., Tosun, D., Zhang, J., Jack, C. R., Galasko, D., & Weiner, M. (2013). Effects of baseline CSF α-synuclein on regional brain atrophy rates in healthy elders, mild cognitive impairment and Alzheimer’s disease. PLoS ONE, 8(12), 1–9.

Mochizuki, H., & Yasuda, T. (2012). Iron accumulation in Parkinson’s disease. Journal of Neural Transmission, 119(12), 1511–1514.

Montufar, S., Calero, C., Vinueza, R., Correa, P., Carrera-Gonzalez, A., Villegas, F., Moreta, G., & Paredes, R. (2017). Association between the APOE ϵ 4 Allele and Late-Onset Alzheimer’s Disease in an Ecuadorian Mestizo Population. International Journal of Alzheimer’s Disease.

Morita, M., Ikeshima-Kataoka, H., Kreft, M., Vardjan, N., Zorec, R., & Noda, M. (2019). Metabolic plasticity of astrocytes and aging of the brain. In International Journal of Molecular Sciences.

Morris, J. K., Bomhoff, G. L., Stanford, J. A., & Geiger, P. C. (2010). Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 299(4), 1–3.

Morris, S. N. S., Coogan, C., Chamseddin, K., Fernandez-Kim, S. O., Kolli, S., Keller, J. N., & Bauer, J. H. (2012). Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochimica et Biophysica Acta - Molecular Basis of Disease.

Münzberg, H., & Myers, M. G. (2005). Molecular and anatomical determinants of central leptin resistance. Nature Neuroscience, 8(5), 566–570.

Murphy, M. P., & Levine, H. (2010). Alzheimer’s Disease and the Beta-Amyloid Peptide. Journal of Alzheimer’s Disease, 19(1), 1–17.

Nandi, A., Kitamura, Y., Kahn, C. R., & Accili, D. (2004). Mouse Models of Insulin Resistance. Physiological Reviews, 84(2), 623–647.

Nelson, P. T., & Schmitt, F. A. (2011). Age Number One Factor of Alzheimer’S Disease. Acta Neuropathol, 121(5), 571–587.

Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43(2), 289–330.

Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 5(1), 194–222.

Pardeshi, R., Bolshette, N., Gadhave, K., Ahire, A., Ahmed, S., Cassano, T., Gupta, V. B., & Lahkar, M. (2017). Insulin signaling: An opportunistic target to minify risk of Alzheimer’s disease. Psychoneuroendocrinology, 83, 159–171.

Park, S., Alfa, R. W., Topper, S. M., Kim, G. E. S., Kockel, L., & Kim, S. K. (2014). A Genetic Strategy to Measure Circulating Drosophila Insulin Reveals Genes Regulating Insulin Production and Secretion. PLoS Genetics.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica.

Perfeito, R., Cunha-Oliveira, T., & Rego, A. C. (2012). Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease - Resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology and Medicine, 53(9), 1791–1806.

Perrotta, F., Nigro, E., Mollica, M., Costigliola, A., D’agnano, V., Daniele, A., Bianco, A., & Guerra, G. (2019). Pulmonary hypertension and obesity: Focus on adiponectin. In International Journal of Molecular Sciences.

Pham, J. D., Chim, N., Goulding, C. W., & Nowick, J. S. (2013). Structures of oligomers of a peptide from β-amyloid. Journal of the American Chemical Society, 135(33), 12460–12467.

Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.

Pitocco, D., Zaccardi, F., Di Stasio, E., Romitelli, F., Santini, S. A., Zuppi, C., & Ghirlanda, G. (2010). Oxidative stress, nitric oxide, and diabetes. Review of Diabetic Studies, 7(1), 15–25.

Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3, 1–21.

Poirier, J., Miron, J., Picard, C., Gormley, P., Théroux, L., Breitner, J., & Dea, D. (2014). Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiology of Aging, 35(SUPPL.2), S3–S10.

Prado, I. O. do, Goulart, A. da S., Viçosa, D. L., Folmer, V., & Salgueiro, A. C. F. (2020). Efeitos metabólicos da infusão das folhas de Bauhinia forficata em Drosophila melanogaster alimentadas com uma dieta rica em sacarose. Research, Society and Development.

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia, 9(1), 63-75.e2.

Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. L. (2014). The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Movement Disorders, 29(13), 1583–1590.

Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer’s Disease, 42, S125–S152.

Ramkumar, K. M., Vanitha, P., Uma, C., Suganya, N., Bhakkiyalakshmi, E., & Sujatha, J. (2011). Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49(12), 3390–3394.

Reagan, L. P. (2012). Diabetes as a chronic metabolic stressor: Causes, consequences and clinical complications. Experimental Neurology, 233(1), 68–78.

Reddy, P. H. (2011). Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Research, 1415, 136–148.

Rees, K., Stowe, R., Patel, S., Ives, N., Breen, K., Ben-Shlomo, Y., & Clarke, C. E. (2011). Anti-hypertensive drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies and clinical trials. Cochrane Database of Systematic Reviews.

Ribeiro Cesaretti, M. L., & Kohlmann, O. (2006). Modelos experimentais de resistência à insulina e obesidade: Lições aprendidas. Arquivos Brasileiros de Endocrinologia e Metabologia, 50(2), 190–197.

Rohilla, A., & Ali, S. (2012). Alloxan Induced Diabetes : Mechanisms and Effects. International Journal of Research in Pharmaceutical and Biomedical Science.

Salgueiro, Andréia C.F., Leal, C. Q., Bianchini, M. C., Prado, I. O., Mendez, A. S. L., Puntel, R. L., Folmer, V., Soares, F. A., Ávila, D. S., & Puntel, G. O. (2013). The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations. Journal of Ethnopharmacology, 148(1), 81–87.

Salgueiro, Andréia Caroline Fernandes, Folmer, V., Da Silva, M. P., Mendez, A. S. L., Zemolin, A. P. P., Posser, T., Franco, J. L., Puntel, R. L., & Puntel, G. O. (2016). Effects of Bauhinia forficata tea on oxidative stress and liver damage in diabetic mice. Oxidative Medicine and Cellular Longevity, 2016.

Sato, T., Shimogaito, N., Wu, X., Kikuchi, S., Yamagishi, S. I., & Takeuchi, M. (2006). Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 21(3), 197–208.

Schernhammer, E., Hansen, J., Rugbjerg, K., Wermuth, L., & Ritz, B. (2011). Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care, 34(5), 1102–1108.

Schildknecht, S., Gerding, H. R., Karreman, C., Drescher, M., Lashuel, H. A., Outeiro, T. F., Di Monte, D. A., & Leist, M. (2013). Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: Implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 125(4), 491–511.

Seino, Y., Nanjo, K., Tajima, N., Kadowaki, T., Kashiwagi, A., Araki, E., Ito, C., Inagaki, N., Iwamoto, Y., Kasuga, M., Hanafusa, T., Haneda, M., & Ueki, K. (2010). Report of the Committee on the classification and diagnostic criteria of diabetes mellitus: The Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus. Diabetology International, 1(1), 2–20.

Sekiyama, K., Sugama, S., Fujita, M., Sekigawa, A., Takamatsu, Y., Waragai, M., Takenouchi, T., & Hashimoto, M. (2012). Neuroinflammation in Parkinson’s disease and related disorders: A lesson from genetically manipulated mouse models of α-synucleinopathies. Parkinson’s Disease, 2012.

Silva, M., de Lima, W. G., & Pedrosa, M. E. S. L. (2011). Efeito da estreptozotocina sobre os perfis glicêmico e lipídico e o estresse oxidativo em hamsters. Arquivos Brasileiros de Endocrinologia e Metabologia, 55(1), 46–53.

Sims-robinson, C., Kim, B., Rosko, A., & Feldman, E. L. (2011). 1-19 diabetes accelerate Alzheimer disease pathology. 6(10), 551–559.

Srinivasan, K., & Ramarao, P. (2012). Animal models in type 2 diabetes research: An overview K. Indian Journal of Medical Research, 136(1), 451–472.

Sun, X., Jin, L., Ling, P., & Ling, P. (2011). Review of drugs for Alzheimer’s disease. Drug Discoveries & Therapeutics, 6(6), 285–290.

Szablewski, L. (2017). Glucose Transporters in Brain: In Health and in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55(4), 1307–1320.

Timper, K., & Donath, M. Y. (2012). Diabetes mellitus Type 2 - The new face of an old lady. Swiss Medical Weekly, 142(JULY).

Tsang, A. H. K., & Chung, K. K. K. (2009). Oxidative and nitrosative stress in Parkinson’s disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1792(7), 643–650.

Tumminia, A., Vinciguerra, F., Parisi, M., & Frittitta, L. (2018). Type 2 diabetes mellitus and alzheimer’s disease: Role of insulin signalling and therapeutic implications. International Journal of Molecular Sciences, 19(11).

Tuon, T. (2012). O papel do estresse oxidativo e do exercício físico na doença de Parkinson. Revista Brasileira de Fisiologia Do Exercício, 11(3), 174.

Vicente Miranda, H., El-Agnaf, O. M. A., & Outeiro, T. F. (2016). Glycation in Parkinson’s disease and Alzheimer’s disease. Movement Disorders, 31(6), 782–790.

Wang, L., Zhang, X. T., Zhang, H. Y., Yao, H. Y., & Zhang, H. (2010). Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice. Journal of Ethnopharmacology, 130(3), 465–469.

White, P. A. S., Cercato, L. M., Araújo, J. M. D., Souza, L. A., Soares, A. F., Barbosa, A. P. O., Neto, J. M. d. R., Marçal, A. C., Machado, U. F., Camargo, E. A., Santos, M. R. V., & Brito, L. C. (2013). Modelo de obesidade induzida por dieta hiperlipídica e associada à resistência à ação da insulina e intolerância à glicose. Arquivos Brasileiros de Endocrinologia e Metabologia, 57(5), 339–345.

Wolkow, C. A., Muñoz, M. J., Riddle, D. L., & Ruvkun, G. (2002). Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. Journal of Biological Chemistry.

Woltjer, R. L., Maezawa, I., Ou, J. J., Montine, K. S., & Montine, T. J. (2003). Advanced glycation endproduct precursor alters intracellular amyloid- β/AβPP carboxy-terminal fragment aggregation and cytotoxicity. Journal of Alzheimer’s Disease, 5(6), 467–476.

Zhao, W., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., Krafft, G. A., & Klein, W. L. (2008). Amyloid beta oligomers induce impairment of neuronal insulin receptors. The FASEB Journal, 22(1), 246–260.




How to Cite

ROCHA, K. M. A. .; GOULART, A. da S.; COSTA, M. T.; SALGUEIRO, A. C. F. .; FOLMER, V. The role of type 2 Diabetes mellitus as a risk factor for Alzheimer’s and Parkinson’s diseases. Research, Society and Development, [S. l.], v. 10, n. 1, p. e23410111673, 2021. DOI: 10.33448/rsd-v10i1.11673. Disponível em: Acesso em: 24 jan. 2021.



Health Sciences