An application to the agricultural transport sector of the reliability analysis
DOI:
https://doi.org/10.33448/rsd-v10i1.11782Keywords:
Parametric models; Proportional risk models; Survival analysis.Abstract
Reliability analysis is the conversion of survival analysis techniques applied in the production department. To perform the reliability analysis, the data set under study must meet the necessary conditions so that it is possible to make reasonable estimates of the risk and reliability functions. The objective of this work is to use the reliability analysis, using non-parametric, semi-parametric and parametric techniques, to explore and model the time of the 11.00R22 tire. A study was carried out with the 11.00R22, and the time in kilometers traveled was calculated using an on-board computer attached to trucks. The data sets have a total of 552 tires, which differed between the three types of lifespan. In carrying out this work, the Kaplan-Meier product limit estimator was applied for the three life groups, and the log-rank test to verify the existence of a significant difference between the survival curves, both non-parametric methods, and in sequence, the parametric approach with the use of the regression model to verify which distribution suited the tire life and also the Cox model to model the risk semi-parametric approach. In the application of the methods, software R was used through the survival package. The Weibull model was best suited to model the life span of 11.00R22 tires.
References
Carvalho, M. S., Andreozi, V. L., Codeço, C. T., Barbosa, M. T., & Shimakura, S. E. (2005). Análise de sobrevida. Rio de Janeiro: Fiocruz.
CNT, Confederação Nacional do Transporte (2019). Disponível em: <http://pesquisarodovias.cnt.org.br/Paginas/relatorio-gerencial>.
Colosimo, E. A., & Giolo, S. R. (2006). Análise de sobrevivência aplicada. Editora Blucher.
Cox D.R. (2018). Analysis of Survival Data. Chapman and Hall/CRC: Routledge.
Fogliato, F., & Ribeiro, J. L. D. (2009). Confiabilidade e manutenção industrial. Elsevier Brasil.
Haviaras, G. (2005). Metodologia para análise de confiabilidade de pneus radiais em frotas de caminhões de longa distância. 2005. 128p (Doctoral dissertation, Dissertação (Mestrado em Engenharia Automotiva)–Escola Politécnica da Universidade de São Paulo, São Paulo).
Herrmann, L. (2011). Estimação de curvas de sobrevivência para estudos de custo-efetividade.
Leal, V. J., & de Resende Andrade, P. C. (2018). Modelagem dos dados de falha de um caminhão fora de estrada. ForScience, 6(3).
Lee, E. T., & Wang, J. (2003). Statistical methods for survival data analysis (Vol. 476). John Wiley & Sons.
Oliveira, T. N., & de Melo, J. A. M. (2019). O efeito da infraestrutura rodoviária sobre os custos operacionais das transportadoras de cargas. NEGÓCIOS EM PROJEÇÃO, 10(2), 107-123.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Ramires, T. G. (2013). A distribuição beta semi-normal generalizada geométrica (Doctoral dissertation, Universidade de São Paulo).
Santos, I. P (2016). Introdução à análise de confiabilidade: Uma aplicação ao setor de Transportes. Monografia de conclusão da Especialização – UEPB. 46p.
Silva, J. R. S., Souza, L. A. D., Castro, L. Z., Ferreira, T. A. & Campos, M. S. (2015). Análise Da Confiabilidade: Um Estudode Caso. XXXV Encontro Nacional De Engenharia De Produção, Perspectivas Globais para a Engenharia de Produção - ENEGEP.
Stacy, E (1962). Generalization of the gamma distribution. Ann. Math. Stat., v:33, p. 1187-1192.
Team, R. C. (2018). R: A language and environment for statistical computing.
Therneau, T. M., & Lumley, T. (2014). Package ‘survival’. Survival analysis Published on CRAN, 2, 3.
Wang, P., Li, Y., & Reddy, C. K (2019). Machine learning for survival analysis: A survey. ACM Computing Surveys (CSUR), 51(6), 1-36.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Isaac Pereira Santos; Pablo Lourenço Ribeiro de Almeida; Deise Pereira da Silva; Cleanderson Romualdo Fidelis; Elias Silva de Medeiros; Tiago Almeida de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.