Evaluation of the natural frequency responses of a guitar by the method of Impulse excitation and signal deconvolution

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.12179

Keywords:

Guitar; Deconvolution; Impulse Excitation; Frequencies; Materials.

Abstract

The parts that make up the guitar are made of the most varied materials to meet the needs related to each component, according to their specific functions to be performed on the instrument. One of the important aspects of current research in musical acoustics is the connection of the measurable physical properties of a musical instrument and its sound or tonal quality. The processing of acoustic signals from a string instrument, for example, can correlate the acoustic signals or sounds of the guitar with a mathematical operation of convolution or deconvolution by establishing relationships with its physical properties. Another technique used is to obtain responses in terms of frequency of vibration or time domain and the impulse excitation technique. The present work aims to evaluate through the separation of the signal referring to the frequency response of the guitar through the deconvolution of the sound signal generated when playing the instrument by the string signal recorded separately. It also seeks to establish the relationships with the responses obtained through the impulse excitation technique. And the results show that these two techniques can represent important techniques for characterizing materials used in string instruments such as the guitar.

References

Astm International (2007). Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM E 1876, 15.

Avitabile, P. (2001). Experimental modal analysis. Sound and Vibration, 35, 20–31.

Baqersad, J., Poozesh, P., Niezrecki, C., & Avitabile, P. (2014). Comparison of modal parameters extracted using MIMO, SIMO, and impact hammer tests on a three-bladed wind Turbine, Topics in Modal Analysis II, Volume 8, Springer, 185-197.

Carcagno, S., Bucknall, R., Woodhouse, J., Fritz, C. & Plack, C. J. (2018). Effect of back wood choice on the perceived quality of steel-string acoustic guitars. The Journal of the Acoustical Society of America 144, 3533 (2018), 10.1121/1.5084735

Cossolino L. C. & Pereira A. H. A. (2010). Amortecimento: classificação e métodos de determinação (Informativo Técnico Científico). Universidade de São Carlos.

Elejabarrieta, M. J., Ezcurra, A. & Santamaría, C. (2000). Evolution of the vibrational behavior of a guitar soundboard along successive construction phases by means of the modal analysis technique. J. Acoust. Soc. Am., 108(1), 369-378.

Haykin, S. S. & Van Veen, B. (2003). Sinais e sistemas. Bookman.

Katznelson, Y. (1976). An introduction to Harmonic Analysis. (2a ed.), Dover.

Lacerda, O. (1996). Compêndio de teoria elementar da música. (9a ed.), Ricordi Brasileira S.A.

Lazzarini, V. E. P. (1998). Elementos de acústica. Music Department - National University of Ireland, Maynooth.

Ludwigsen, D. (2013). Spectral character of the resonator guitar. The Journal of the Acoustical Society of America, 134.

Mendes, H. M. D., Senra, R. E. F., Junior, J. G. M., Lima, S. S., & Mello, G. J. (2020). Sound waves in science education: as a learning facilitator. Research, Society and Development, 9(3), e03932261. https://doi.org/10.33448/rsd-v9i3.2261

O'Haver, T. (2008). A Pragmatic Introduction to Signal Processing. Department of Chemistry and Biochemistry, University of Maryland at College Park. https://terpconnect.umd.edu/~toh/spectrum/

Otani, L.B., Segundinho, P.G.A., Morales, E. A. M. & Pereira, A.H.A. (2017). Caracterização dos módulos elásticos de madeiras e derivados utilizando a Técnica de Excitação por Impulso (ITC-05 /ATCP). ATCP Engenharia Física.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. Ed. UAB/NTE/UFSM.

Portela, M. S. (2014). Estudo das Propriedades Acústicas da Madeira Amazônica Marupá para Tampo de Violão. Tese (Doutorado em Engenharia Mecânica). Programa de Pós Graduação em Engenharia Mecânica da Universidade Federal de Santa Catarina.

Roebben, G., Bollen, B., Van Humbeeck, J. & Van Der Biest, O. (1997). O. Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature. Review of Scientific Instruments, 68, 4511. https://doi.org/10.1063/1.1148422

Santos, E. M., Molina, C. & Tufaile, A. P. B. (2013). Violão e guitarra como ferramentas para o ensino de física. v. 35, n. 2, 2507. Revista Brasileira de Ensino de Física.

Teixeira, P. S., Silva, A. J. & Feiteira, J. F. S. (2014). Avaliação e comparação de características de amortecimento de sinais gerados de diferentes violões Cadernos UniFoa, 9(26), 17-30.

Teixeira, P. S., Silva, A. J. & Feiteira, J. F. S. (2015). Análise e síntese de sinais de instrumentos dedilhados. Em estudo: O Violão. (Dissertação de Mestrado). EEIMVR, Universidade Federal Fluminense.

Yilmaz, O. (1987) Seismic data processing. SEG Investigations in Geophysics.

Wright, H. (1996). The Acoustics and Psichoacoustics of the Guitar (Ph.D.Thesis). Department of Physics and Astronomy. University of Wales.

Wuensche, C. A. (2009). Física da Música. inpe/MCT. Divisão de Astrofísica. http://www.das.inpe.br/~alex/FisicadaMusica/fismus_indice.htm.

Published

31/01/2021

How to Cite

TEIXEIRA, P. S.; FERREIRA, A. . F.; FEITEIRA, J. F. S. Evaluation of the natural frequency responses of a guitar by the method of Impulse excitation and signal deconvolution. Research, Society and Development, [S. l.], v. 10, n. 1, p. e59810112179, 2021. DOI: 10.33448/rsd-v10i1.12179. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12179. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings