O papel dos micronutrientes no tratamento da COVID-19 para adultos, crianças e idosos

Autores

DOI:

https://doi.org/10.33448/rsd-v10i2.12259

Palavras-chave:

Infecções por Coronavirus; Micronutrientes; Adulto; Idoso; Criança; Deficiência de vitaminas.

Resumo

Introdução: Os coronavírus têm sido demonstrados como causadores de infecções em humanos. Esses tipos virais foram os agentes causadores dos surtos da Síndrome Respiratória Aguda Grave. Desnutrição específica leva a efeitos deletérios na imunidade. Assim, o tratamento dessas deficiências, tanto em ambulatórios quanto em pacientes internados com suspeita SARS-CoV-2, poderia ajudar o sistema imunológico a desempenhar seu papel em um nível ideal. Objetivo: Esta revisão tem como objetivo discutir os efeitos benéficos dos tratamentos para deficiências específicas relacionadas às vitaminas A, D, C, zinco e selênio. Métodos: Método: Trata-se de uma revisão narrativa. A pesquisa incluiu pesquisa em bancos de dados eletrônicos e busca manual de citações em LILACS e MEDLINE, desenvolvida entre junho de 2020 e dezembro de 2020. Resultados e Discussão: O sistema imunológico sofre mudanças ao longo da vida e depende de um fornecimento adequado de nutrientes. Alguns micronutrientes da dieta têm papéis muito específicos para desenvolver e manter um sistema imunológico eficaz. Os micronutrientes mais necessários para suportar a imunocompetência são as vitaminas A, C, D, E, B2, B6, B12, ácido fólico e os minerais zinco, selênio, ferro, magnésio e cobre. Espera-se que a dieta forneça uma quantidade adequada desses nutrientes. No entanto, a ingestão diária dessas substâncias pode ser maior durante infecções. Isso é particularmente importante em infecções agudas do trato respiratório. Conclusão: Este artigo demonstra a importância de manter uma dieta equilibrada, com ingestão adequada de micronutrientes, especialmente quando se trata da pandemia por COVID-19.

Referências

Abbatecola, A. M., & Antonelli-Incalzi, R. (2020). COVID-19 Spiraling of Frailty in Older Italian Patients. Journal of Nutrition, Health and Aging, 24(5), 453–455. https://doi.org/10.1007/s12603-020-1357-9

Ac, R., Cl, T., Al, Y., & Hb, D. V. (2011). Dietary Reference Intakes for Calcium and Vitamin D. In Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press. https://doi.org/10.17226/13050

Amaya-Farfan, J., Domene, S. M. A., & Padovani, R. M. (2001). Dri: Commented note of the new nutritional recommendations for dietary antioxidants. Revista de Nutricao, 14(1), 71–78. https://doi.org/10.1590/s1415-52732001000100010

Barazzoni, R., Bischoff, S. C., Breda, J., Wickramasinghe, K., Krznaric, Z., Nitzan, D., Pirlich, M., & Singer, P. (2020). ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clinical Nutrition, 39(6), 1631–1638. https://doi.org/10.1016/j.clnu.2020.03.022

Barnard, D. L., Wong, M. H., Bailey, K., Day, C. W., Sidwell, R. W., Hickok, S. S., & Hall, T. J. (2007). Effect of oral gavage treatment with ZnAL42 and other metallo-ion formulations on influenza A H5N1 and H1N1 virus infections in mice. Antiviral Chemistry and Chemotherapy, 18(3), 125–132. https://doi.org/10.1177/095632020701800302

Bhutta, Z. A., Black, R. E., Brown, K. H., Meeks Gardner, J., Gore, S., Hidayat, A., Khatun, F., Martorell, R., Ninb, N. X., Penny, M. E., Rosado, J. L., Roy, S. K., Ruel, M., Sazawal, S., & Shankar, A. (1999). Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: Pooled analysis of randomized controlled trials. Journal of Pediatrics, 135(6), 689–697. https://doi.org/10.1016/S0022-3476(99)70086-7

Bjelakovic, G., Nikolova, D., Simonetti, R. G., & Gluud, C. (2008). Antioxidant supplements for preventing gastrointestinal cancers. The Cochrane Database of Systematic Reviews, 3, CD004183. https://doi.org/10.1002/14651858.CD004183.pub3

Bruce, D., Ooi, J. H., Yu, S., & Cantorna, M. T. (2010). Vitamin D and host resistance to infection? Putting the cart in front of the horse. Experimental Biology and Medicine, 235(8), 921–927. https://doi.org/10.1258/ebm.2010.010061

Caccialanza, R., Laviano, A., Lobascio, F., Montagna, E., Bruno, R., Ludovisi, S., Corsico, A. G., Di Sabatino, A., Belliato, M., Calvi, M., Iacona, I., Grugnetti, G., Bonadeo, E., Muzzi, A., & Cereda, E. (2020, June 1). Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. https://doi.org/10.1016/j.nut.2020.110835

Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020, April 23). Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients, 12(4), 1181. https://doi.org/10.3390/nu12041181

Carr, A. C., Pullar, J. M., Bozonet, S. M., & Vissers, M. C. M. (2016). Marginal ascorbate status (Hypovitaminosis C) results in an attenuated response to vitamin C supplementation. Nutrients, 8(6). https://doi.org/10.3390/nu8060341

Childs, C. E., Calder, P. C., & Miles, E. A. (2019). Diet and immune function. Nutrients, 11(8). https://doi.org/10.3390/nu11081933

Corvalán, C., Garmendia, M. L., Jones-Smith, J., Lutter, C. K., Miranda, J. J., Pedraza, L. S., Popkin, B. M., Ramirez-Zea, M., Salvo, D., & Stein, A. D. (2017). Nutrition status of children in Latin America. Obesity Reviews, 18(Suppl Suppl 2), 7–18. https://doi.org/10.1111/obr.12571

Crooke, S. N., Ovsyannikova, I. G., Poland, G. A., & Kennedy, R. B. (2019). Immunosenescence and human vaccine immune responses. Immunity & Ageing, 16(1). https://doi.org/10.1186/s12979-019-0164-9

Dewey, K. G., Yang, Z., & Boy, E. (2009). Systematic review and meta‐analysis of home fortification of complementary foods. Maternal & Child Nutrition, 5(4), 283–321.

Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. (2001). In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press. https://doi.org/10.17226/10026

Ebadi, M., & Montano-Loza, A. J. (2020). Perspective: improving vitamin D status in the management of COVID-19. In European Journal of Clinical Nutrition (Vol. 74, Issue 6, pp. 856–859). Springer Nature. https://doi.org/10.1038/s41430-020-0661-0

Farias, P. K. S., Prates, R. P., da Silva, N., de Souza, S. A., & Pereira, M. M. (n.d.). Estratégia De Fortificação Da Alimentação Infantil Com Micronutrientes Em Pó-Nutrisus.

Fidelis, C. M. F., & Osório, M. M. (2007). Dietary intake of macro and micronutrients by children under 5 years of age in the State of Pernambuco, Brazil. Revista Brasileira de Saude Materno Infantil, 7(1), 63–74. https://doi.org/10.1590/s1519-38292007000100008

Fischer Walker, C. L., Ezzati, M., & Black, R. E. (2009). Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition, 63(5), 591–597. https://doi.org/10.1038/ejcn.2008.9

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1). https://doi.org/10.3390/nu12010236

Grosso, G., Bei, R., Mistretta, A., Marventano, S., Calabrese, G., Masuelli, L., Giganti, M. G., Modesti, A., Galvano, F., & Gazzolo, D. (2013). Effects of vitamin C on health: A review of evidence. Frontiers in Bioscience, 18(3), 1017–1029. https://doi.org/10.2741/4160

Guillin, O. M., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, selenoproteins and viral infection. Nutrients, 11(9). https://doi.org/10.3390/nu11092101

Hemilä, H., & Chalker, E. (2013). Vitamin C for preventing and treating the common cold. Cochrane Database of Systematic Reviews, 2013(1). https://doi.org/10.1002/14651858.CD000980.pub4

Hewison, M. (2010). Vitamin D and the immune system: New perspectives on an old theme. Endocrinology and Metabolism Clinics of North America, 39(2), 365–379. https://doi.org/10.1016/j.ecl.2010.02.010

Himoto, T., & Masaki, T. (2018). Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients, 10(1). https://doi.org/10.3390/nu10010088

Hoeger, J., Simon, T. P., Beeker, T., Marx, G., Haase, H., & Schuerholz, T. (2017). Persistent low serum zinc is associated with recurrent sepsis in critically ill patients - A pilot study. PLoS ONE, 12(5). https://doi.org/10.1371/journal.pone.0176069

Hoffmann, P. R., & Berry, M. J. (2008). The influence of selenium on immune responses. Molecular Nutrition and Food Research, 52(11), 1273–1280. https://doi.org/10.1002/mnfr.200700330

Ilie, P. C., Stefanescu, S., & Smith, L. (2020). The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clinical and Experimental Research, 32(7), 1195–1198. https://doi.org/10.1007/s40520-020-01570-8

Kańtoch, M., Litwińska, B., Szkoda, M., & Siennicka, J. (2002). Importance of vitamin A deficiency in pathology and immunology of viral infections. Roczniki Panstwowego Zakladu Higieny, 53(4), 385.

Kostermans, D., Simadibrata, M., Hasan, I., & Budiyani, L. (2014). The Effect of Zinc Supplementation in Adult Patients with Acute Diarrhea. Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy, 15(2), 83–87. https://doi.org/10.24871/152201483-87

Krinsky, N. I., Beecher, G. R., Burk, R. F., Chan, A. C., Erdman, j J. W., Jacob, R. A., Jialal, I., Kolonel, L. N., Marshall, J. R., & Taylor Mayne, P. R. L. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Institute of Medicine.

Kumssa, D. B., Joy, E. J. M., Ander, E. L., Watts, M. J., Young, S. D., Walker, S., & Broadley, M. R. (2015). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific Reports, 5. https://doi.org/10.1038/srep10974

Leung, C. (2020). Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. Mechanisms of Ageing and Development, 188. https://doi.org/10.1016/j.mad.2020.111255

Lima, L. W., Stonehouse, G. C., Walters, C., Mehdawi, A. F. El, Fakra, S. C., & Pilon-Smits, E. A. H. (2019). Selenium Accumulation, Speciation and Localization in Brazil Nuts (Bertholletia excelsa H.B.K.). Plants, 8(8), 289. https://doi.org/10.3390/plants8080289

Machado, J., Silvestre, S., Marchini, J., & Vannuchi, H. (2009). Manual de Procedimentos em Nutrologia. Guanabara Koogan.

Mafra, D., & Cozzolino, S. M. F. (2004). The importance of zinc in human nutrition. Revista de Nutricao, 17(1), 79–87. https://doi.org/10.1590/s1415-52732004000100009

Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune function and micronutrient requirements change over the life course. Nutrients, 10(10). https://doi.org/10.3390/nu10101531

Maret, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20(1), 3–18. https://doi.org/10.1016/j.jtemb.2006.01.006

Martineau, A. R., Jolliffe, D. A., Hooper, R. L., Greenberg, L., Aloia, J. F., Bergman, P., Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A. A., Goodall, E. C., Grant, C. C., Griffiths, C. J., Janssens, W., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch, D. R., Neale, R., … Camargo, C. A. (2017). Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ (Online), 356. https://doi.org/10.1136/bmj.i6583

Mocchegiani, E., Romeo, J., Malavolta, M., Costarelli, L., Giacconi, R., Diaz, L. E., & Marcos, A. (2013). Zinc: Dietary intake and impact of supplementation on immune function in elderly. Age, 35(3), 839–860. https://doi.org/10.1007/s11357-011-9377-3

Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., Hackler, J., Seemann, P., Diegmann, J., Pilz, M., Bachmann, M., Minich, W. B., & Schomburg, L. (2020). Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12(7), 1–13. https://doi.org/10.3390/nu12072098

Nagib, A., Aldemar, A., & Castro, A. (n.d.). Revisão Sistemática da Literatura e Metanálise: a melhor forma de evidência para tomada de decisão em saúde e a maneira mais rápida de atualização terapêutica. Retrieved January 26, 2021, from http://hiru.mcmaster.ca/cochrane

Nogueira, T. B. de B., Oliveira, T. A. de, Medina, T. de S., Nascimento, F. R., Nascimento, T. P. do, & Ferreira, M. S. L. (2019). Acessibilidade, biodisponibilidade e consumo de alimentos ricos em carotenoides e vitamina A em crianças de até 5 anos. In SEMEAR: Revista de Alimentação, Nutrição e Saúde (Vol. 1, Issue 1). http://www.seer.unirio.br/index.php/ralnuts/article/view/8308

Oh, S. J., Lee, J. K., & Shin, O. S. (2019). Aging and the immune system: The impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Network, 19(6). https://doi.org/10.4110/in.2019.19.e37

Organization, W. H. (2007). Preventing and controlling micronutrient deficiencies in populations affected by an emergency. Joint Statement by the WHO/FAO/UNICEF. Geneva: WHO.

Organization, W. H. (2010). Diarrhoea treatment guidelines including new recommendations for the use of ORS and zinc supplementation for clinic-based healthcare workers. Version current January 2005. In Available from: whqlibdoc. who. int/publications/2005/a85500. pdf.

Organization, W. H., & UNICEF. (2006). Johns Hopkins Bloomberg School of Public Health; USAID. Implementing the new recommendations on the clinical management of diarrhea. Guidelines for policy makers and programme managers. Geneva, Switzerland: WHO Press.

Padovani, R. M., Amaya-Farfán, J., Colugnati, F. A. B., & Domene, S. M. Á. (2006). Dietary reference intakes: Application of tables in nutritional studies. Revista de Nutricao, 19(6), 741–760. https://doi.org/10.1590/S1415-52732006000600010

Pae, M., & Wu, D. (2017). Nutritional modulation of age-related changes in the immune system and risk of infection. Nutrition Research, 41, 14–35. https://doi.org/10.1016/j.nutres.2017.02.001

Pawelec, G. (2018). Age and immunity: What is “immunosenescence”? Experimental Gerontology, 105, 4–9. https://doi.org/10.1016/j.exger.2017.10.024

Pedraza, D. F., Rocha, A. C. D., & Sousa, C. P. C. (2013). Crescimento e deficiências de micronutrientes: perfil das crianças assistidas no núcleo de creches do governo da Paraíba, Brasil. Ciência & Saúde Coletiva, 18, 3379–3390.

Read, S. A., Obeid, S., Ahlenstiel, C., & Ahlenstiel, G. (2019). The Role of Zinc in Antiviral Immunity. Advances in Nutrition, 10(4), 696–710. https://doi.org/10.1093/advances/nmz013

Ruel-Bergeron, J. C., Stevens, G. A., Sugimoto, J. D., Roos, F. F., Ezzati, M., Black, R. E., & Kraemer, K. (2015). Global update and trends of hidden hunger, 1995-2011: The hidden hunger Index. PLoS ONE, 10(12). https://doi.org/10.1371/journal.pone.0143497

Rükgauer, M., Klein, J., & Kruse-Jarres, J. D. (1997). Reference values for the trace elements copper, manganese, selenium, and zinc in the serum/plasma of children, adolescents, and adults. Journal of Trace Elements in Medicine and Biology, 11(2), 92–98. https://doi.org/10.1016/S0946-672X(97)80032-6

Schwingshackl, L., Boeing, H., Stelmach-Mardas, M., Gottschald, M., Dietrich, S., Hoffmann, G., & Chaimani, A. (2017). Dietary Supplements and risk of cause-specific death, cardiovascular disease, and cancer: A systematic review and meta-analysis of primary prevention trials. Advances in Nutrition, 8(1), 27–39. https://doi.org/10.3945/an.116.013516

Semba, R. D. (1999). Vitamin A and immunity to viral, bacterial and protozoan infections. Proceedings of the Nutrition Society, 58(3), 719–727. https://doi.org/10.1017/S0029665199000944

Silva, L. L. S. da. (2017). Fortificação da alimentação complementar com múltiplos micronutrientes em pó na prevenção da anemia e no estado nutricional de vitamina A em crianças da Atenção Básica.

Singer, P., Berger, M. M., Van den Berghe, G., Biolo, G., Calder, P., Forbes, A., Griffiths, R., Kreyman, G., Leverve, X., & Pichard, C. (2009). ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clinical Nutrition, 28(4), 387–400. https://doi.org/10.1016/j.clnu.2009.04.024

Singer, P., Blaser, A. R., Berger, M. M., Alhazzani, W., Calder, P. C., Casaer, M. P., Hiesmayr, M., Mayer, K., Montejo, J. C., Pichard, C., Preiser, J. C., van Zanten, A. R. H., Oczkowski, S., Szczeklik, W., & Bischoff, S. C. (2019). ESPEN guideline on clinical nutrition in the intensive care unit. Clinical Nutrition, 38(1), 48–79. https://doi.org/10.1016/j.clnu.2018.08.037

Siva, S., Rubin, D. T., Gulotta, G., Wroblewski, K., & Pekow, J. (2017). Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflammatory Bowel Diseases, 23(1), 152–157. https://doi.org/10.1097/MIB.0000000000000989

Ströhle, A., & Hahn, A. (2009). Importance of micronutrients for immunity. Prevention and therapeutic aspects. MMW Fortschritte Der Medizin, 151(Supplement 3), 133–141.

te Velthuis, A. J. W., van den Worml, S. H. E., Sims, A. C., Baric, R. S., Snijder, E. J., & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 6(11). https://doi.org/10.1371/journal.ppat.1001176

Teng, J., Pourmand, A., & Mazer-Amirshahi, M. (2018). Vitamin C: The next step in sepsis management? Journal of Critical Care, 43, 230–234. https://doi.org/10.1016/j.jcrc.2017.09.031

Trottier, C., Colombo, M., Mann, K. K., Miller, W. H., & Ward, B. J. (2009). Retinoids inhibit measles virus through a type I IFN‐dependent bystander effect. The FASEB Journal, 23(9), 3203–3212. https://doi.org/10.1096/fj.09-129288

Uchide, N., Ohyama, K., Bessho, T., Yuan, B., & Yamakawa, T. (2002). Effect of antioxidants on apoptosis induced by influenza virus infection: Inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate. Antiviral Research, 56(3), 207–217. https://doi.org/10.1016/S0166-3542(02)00109-2

Wessells, K. R., & Brown, K. H. (2012). Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0050568

West, C. E., Sijtsma, S. R., Kouwenhoven, B., Rombout, J. H. W. M., & Van der Zijpp, A. J. (1992). Epithelia-damaging virus infections affect vitamin A status in chickens. Journal of Nutrition, 122(2), 333–339. https://doi.org/10.1093/jn/122.2.333

Zaatari, S., Radecki, R. P., & Spiegel, R. (2020). Vitamin C May Not Help Your Cold, but Can It Treat Sepsis and Acute Respiratory Distress Syndrome?: March 2020 Annals of Emergency Medicine Journal Club. Annals of Emergency Medicine, 75(3), 455–457. https://doi.org/10.1016/j.annemergmed.2020.01.014

Zemb, P., Bergman, P., Camargo, C. A., Cavalier, E., Cormier, C., Courbebaisse, M., Hollis, B., Joulia, F., Minisola, S., Pilz, S., Pludowski, P., Schmitt, F., Zdrenghea, M., & Souberbielle, J. C. (2020). Vitamin D deficiency and the COVID-19 pandemic. Journal of Global Antimicrobial Resistance, 22, 133–134. https://doi.org/10.1016/j.jgar.2020.05.006

Zhang, J., Taylor, E. W., Bennett, K., Saad, R., & Rayman, M. P. (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China. American Journal of Clinical Nutrition, 111(6), 1297–1299. https://doi.org/10.1093/ajcn/nqaa095

Zhang, L., & Liu, Y. (2020). Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology, 92(5), 479–490. https://doi.org/10.1002/jmv.25707

Zumla, A., Hui, D. S., Azhar, E. I., Memish, Z. A., & Maeurer, M. (2020). Reducing mortality from 2019-nCoV: host-directed therapies should be an option. The Lancet, 395(10224), e35–e36. https://doi.org/10.1016/S0140-6736(20)30305-6

Downloads

Publicado

04/02/2021

Como Citar

FERNANDES, S. L.; FERREIRA, A. L. dos A.; SORIANO, E. de A.; SILVESTRE, S. C. de M.; NOGUEIRA-DE-ALMEIDA, C. A.; IUCIF JUNIOR, N.; PIMENTEL, R. F. W.; MADURO, I. P. de N. N. O papel dos micronutrientes no tratamento da COVID-19 para adultos, crianças e idosos. Research, Society and Development, [S. l.], v. 10, n. 2, p. e7010212259, 2021. DOI: 10.33448/rsd-v10i2.12259. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12259. Acesso em: 6 abr. 2025.

Edição

Seção

Artigos de Revisão