Larvicidal activity of Diplodia pinea extracts against Aedes aegypti

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12295

Keywords:

Fungus; Dengue; Vector; Insecticide; Artemia salina; Secondary metabolites.

Abstract

Numerous primary and secondary metabolites from fungi have been highlighted in the research due to the biological potential of their molecules, with direct application in the health area. Dengue is a pathology transmitted by a vector, the mosquito Aedes aegypti, and has great epidemiological relevance in several countries, including Brazil. As strategies of the Ministry of Health to combat and control dengue, the use of insecticides, elimination of breeding sites and awareness campaigns are used. The use of insecticidal compounds has a mechanism of action on the A. aegypti mosquito and its larvae. In this context and taking into account that larvicides of natural origin, in the most part, do not cause such severe impacts to the environment and human health, the objective of this work was to test the larvicidal activity of extracts obtained from the fungus Diplodia pinea, observe the yield of these extracts and perform a qualitative chemical screening to observe secondary compounds. The hexane and chloroform extracts showed significant larvicidal activity with LC50 441.42 and LC50 90.49, respectively. The screening of metabolites indicated the presence for the steroid classes, triterpenes and phenolic compounds and the extracts yield was from 1.67 to 47.33%. These results demonstrate that the extracts obtained from the fungus D.pinea have a potential larvicidal effect and absence of toxicity against Artemia salina.

References

Amarante C. B., Muller A. H., Povoa M. M., & Dolabela M. F. (2011). Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amazonica 41(3), 431-434. https://doi.org/10.1590/S0044-59672011000300015.

Beard, R. L., & Walton, G. S. (1969). Kojic acid as an insecticidal mycotoxin, Journal of Invertebrate Pathology, 14(1), 53-59. https://doi.org/10.1016/0022-2011(69)90010-X.

Basilio, P. R. R. C. (2013). Caracterização morfofisiológica, patogênica e molecular de isolados de Diplodia pinea. Tese de Doutorado. Universidade Federal do Paraná.

Beserra, E. B., Freitas, E. M., Souza, J. T., Fernandes, C. R. M., & Santos K. D. (2009). Ciclo de vida de Aedes (Stegomyia) aegypti (Diptera, Culicidae) em águas com diferentes características. Iheringia, Série Zoologia 99(3), 281-285. https://www.scielo.br/pdf/isz/v99n3/08.pdf

Braga, I. A., & Valle, D. (2007). Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiologia e Serviços de Saúde 16(4), 279–293. http://dx.doi.org/10.5123/S1679-49742007000400006.

Brasil. Ministério da Saúde. (2009). Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Diretrizes nacionais para a prevenção e controle de epidemias de dengue. Série A. Normas e Manuais Técnicos. https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_nacionais_prevencao_controle_dengue.pdf.

Betim, F. C. M., Oliveira, C. F., Souza, A. M., Szabo, E. M., Zanin, S. M. W., Miguel, O. G., Miguel, M. D., Dias, J. F. G. (2019). Ocotea nutans (Nees) Mez (Lauraceae): chemical composition, antioxidant capacity and biological properties of essential oil. Brazilian journal of pharmaceutical sciences 55(Article 18284). http://dx.doi.org/10.1590/s2175-97902019000118284

Bücker, A., Bücker, N. C. F., Souza, A. Q. L., Gama, A. M., Rodrigues-Filho, E., Costa, F. M., Nunez, C. V., Silva, A. C., & Tadei, W. P. (2013). Larvicidal effects of endophytic and basidiomycete fungus extracts on Aedes and Anopheles larvae (Diptera, Culicidae). Revista da Sociedade Brasileira de Medicina Tropical 46(4), 411-419. https://doi.org/10.1590/0037-8682-0063-2013.

Carvalho, J. L. S.; Cunico, M. M.; Dias, J. F. G; Miguel, M. D.; & Miguel, O. G. (2009). Termoestabilidade de processos extrativos de Nasturtium officinale R. Br., brassicaceae por sistema de Soxhlet modificado. Química Nova 32(4), 1031–1035. doi: https://doi.org/10.1590/S0100-40422009000400034

Ciegler, A. (1977). Mycotoxins as insecticides. The saprophytic and aerobic bacteria and fungi. Conference Report. Biological Regulation of Vectors 135-144. https://books.google.com.br/books?hl=pt-BR&lr=&id=os9KfRcp9HIC&oi=fnd&pg=PA135&dq=diplodia+insecticide&ots=nXLeuB818P&sig=hKw4PrPtA VuCQvE6QyKfHzzqMHQ&redir_esc=y#v=onepage&q&f=false.

Furtado, A. N. R., Lima, A. S. F., Oliveira, A. S., Teixeira, A. B., Ferreira, D. S., Oliveira, E. C., Cavalcanti, G. B., Sousa, W. A., & Lima, W. M. (2019). Dengue e seus avanços. Revista Brasileira de Análises Clínicas 51(3), 196-201. doi: 10.21877/2448-3877.201900723.

Garcez, W. S., Garcez, F. R., Silva, L. M. G. E., & Sarmento, U. C. (2013). Substâncias de origem vegetal com atividade larvicida contra Aedes aegypti. Revista Virtual de Química 5(3), 363-393. 10.5935/1984-6835.20130034.

Geris, R., Rodrigues-Fo, E., Silva, H. H. G., & Silva, I. G. (2008). Larvicidal effects of fungal meroterpenoids in the control of Aedes aegypti L., the main vector of dengue and yellow fever. Chemistry & Biodiversity 5(2), 341 – 345. https://doi.org/10.1002/cbdv.200890032

Hollingworth, R. M. (1976). Chemistry, biological activity, and uses of formamidine pesticides. Environ Health Perspect 57-69. 10.1289/ehp.761457.

Lima, C. P., Cunico, M. M., Trevisan, R. R., Philippsen, A. F., Miguel, O. G., & Miguel, M. D. (2011). Efeito alelopático e toxicidade frente à Artemia salina Leach dos extratos do fruto de Euterpe edulis Martius. Acta Botanica Brasilica 25(2), 331-336. https://doi.org/10.1590/S0102-33062011000200009

Moura, P. F. (2017). Caracterização e otimização dos métodos de cultivo dos fungos Armillaria sp., Botrytis cinerea e Diplodia pinea, estudo químico e avaliação das atividades biológicas de extratos de Diplodia pinea. Dissertação de Mestrado. Universidade Federal do Paraná.

Meyer B. N., Ferrigni N. R., Putnam J. E., Jacobsen L. B., Nichols D. E., & Mclaughlin J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 45, 31-34. doi: 10.1055/s-2007-971236.

Ortega, M. R. O., Moreno, M. L. C. C., & Domígues, M. L. A. D. (2015). Análisis sobre el dengue, su agente transmisor y estrategias de prevención y control Archivo Médico de Camagüey 19(2), 189-202. https://www.medigraphic.com/pdfs/medicocamaguey/amc-2015/amc152m.pdf

Pandey, A.; & Tripathi, S. (2014). Concept of standardization, extraction and prephytochemical screening strategies for herbal drug. Journal of Pharmacognosy Phytochemistry 2(5), 115-119. https://www.phytojournal.com/vol2Issue5/Issue_jan_2014/11.pdf

Pandi, M., Koodalingam, A., Manikandan, R., & Muthumary, J. (2008). Larvicidal activity of two extracts of endophitic fungi isolated from Pongamiapinata (L) Pierre. Indian Journal of Applied Microbiology 8(1), 34-36. http://www.ijamicro.com/8-1-2008/8.pdf.

Pinheiro, J. B., Polonio, J. C., Orlandelli, R. C., Pamphile, J. A., & Golias, H. C. (2020). Atividade larvicida de fungos endofíticos: uma revisão. Brazilian Journal of Development 6(6), 35761-35774. 10.34117/bjdv6n6-205.

Podder, D. & Grosh, S. K. (2019). A new application of Trichoderma asperellum as an anopheline larvicide for ecofriendly management in medical science. Scientific Reports 9(Article 1108), 1-15. doi: https://doi.org/10.1038/s41598-018-37108-2.

Rickli, M. E., Pradella, H. Q., Gomes, M. G., Belini, B. P., Bortolucci, W. C., Fernandez, C. M. M., Colauto, N. B., Linde, G. A., & Gazim, Z. C. (2020). Atividade bioinseticida de Philodendron bipinnatifidum. Research, Society and Development 9(11), 1-12. doi: http://dx.doi.org/10.33448/rsd-v9i11.10464.

Rodrigues, F. A., Pimenta, V. S. C., Braga, K. M. S., & Araújo, E. G. (2016). Obtenção de extratos de plantas do cerrado. Enciclopédia Bioesfera 13(23), 870-888. 10.18677/Enciclopedia_Biosfera_2016_075

Sathiyanathan, M. & Umarajan, K. M. (2019). Larvicidal activity of endophytic fungi isolated from selected medicinal plants on Aedes aegypti. Journal of Pharmacognosy and Phytochemistry 8(2), 247 – 253. https://www.phytojournal.com/archives/2019/vol8issue2/PartE/8-1-219-523.pdf

Silva, F. B., Mazarotto, E. J., Santos, A. F., & Auer, C. G. (2018). Caracterização morfológica, fisiológica e patogênica de isolados de Armillaria sp. da Região Sul do Brasil. Summa Phytopathologica, 44(1), 23-31. https://doi.org/10.1590/0100-5405/175653.

Soni, N.; & Prakash, S. (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitology Research 110, 175-184. 10.1007/s00436-011-2467-4.

Spiassi, A., Nóbrega, L. H. P., Rosa, D. M., Pacheco, F. P., Senem, J., & Lima, G. P. (2015). Allelopathic effects of pathogenic fungi on weed plants of soybean and corn crops. Bioscience journal 31(4), 1037-1048. https://doi.org/10.14393/BJ-v31n4a2015-26142.

Wagner, H. (1996). Plant Drugs analysis. (2a ed.) Berlin: Springer, 298-299 e 319.

World Health Organization – WHO (Organização Mundial da Saúde). (2020). Epidemiological Update: Arbovirus. Washington, D.C.

Zara, A. L. S. A., Santos, S. M., Fernandes-Oliveira, E. S., Carvalho, R. G., & Coelho, G. E. (2016). Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde 26(2), 391-404. http://dx.doi.org/10.5123/S1679-49742016000200017.

Published

04/02/2021

How to Cite

MOURA, P. F.; BETIM, F. C. M.; OLIVEIRA , C. F. de; DIAS, J. de F. G. .; MONTRUCCHIO, D. P. .; MIGUEL, O. G. .; AUER, C. G.; MIGUEL, M. D. . Larvicidal activity of Diplodia pinea extracts against Aedes aegypti. Research, Society and Development, [S. l.], v. 10, n. 2, p. e6710212295, 2021. DOI: 10.33448/rsd-v10i2.12295. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12295. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences