Relationship between corn harvest index and phosphorus efficiencies through trail

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12358

Keywords:

Multivariate statistics; Nutrients; Fertilization; Fertigation; Zea Mays.

Abstract

The productivity of different crops, including corn, is influenced by the ability of plants to absorb and use nutrients. The objective was to verify, through trail analysis, the direct and indirect relationships between the harvest index and the efficiency of phosphorus use in corn. The study variables were: corn harvest index (HI), phosphorus harvest index (FO), compartmentalized use efficiency on the leaf (CF), compartmentalized use efficiency on the stem (CC), compartmentalized use efficiency on the straw (CP), efficiency of use compartmentalized in the grain (CG), efficiency of use integrated in the leaf (IF), efficiency of use integrated in the stem (IC), efficiency of use integrated in the straw (IP). Through Pierson's correlation, we observed a high and positive correlation between CP and IP, CF and IF and IC and FO. There was a strong and negative correlation between: IC and IP, IC and CP and FO and CG. O It was concluded that the variables that obtained the greatest direct and positive effects on the corn harvest index were: harvest index for phosphorus and efficiency of compartmentalized use in the grain. Direct and negative effects on the corn harvest index were: efficiency of compartmentalized use in the straw and efficiency of compartmentalized use in the leaf. Indirectly, the trail analysis showed that efficiency of compartmentalized use in the grain and efficiency of integral use in the leaf are strongly positively correlated, and in the opposite direction, efficiency of compartmentalized use in the grain and harvest index for phosphorus are negatively correlated.

References

Bhering, L. L. (2017). RBio: A Tool For Biometric and Statistical Analysis Using The R Platform. Crop Breeding And Applied Biotechnology, 17, 187 – 190. https://doi.org/10.1590/1984-70332017v17n2s29.

Blind, A. D., Valente, M. S. F., Lopes, M. T.G., & Resende, M. D. V. (2018). Estimativa de parâmetros genéticos, análise de trilha e seleção em bucha vegetal para caracteres agronômicos. Revista Brasileira de Ciências Agrárias, 13(2). 10.5039/agraria.v13i2a5522.

CONAB - Companhia Nacional de Abastecimento. (2020). Acompanhamento da safra brasileira de grãos, v. 7 - Safra 2019/20 - Décimo primeiro levantamento, Brasília, p. 1 - 62, agosto 2020. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos.

Cruz, C.D. Genes: (2013). A Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Scientiarum: Agronomy, 35, 271 - 276. https://doi.org/10.4025/actasciagron.v35i3.21251.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2017). Manual de métodos de análise de solo. 3a edição revista e ampliada. Brasília, DF: Embrapa.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa. (5a ed.), revista e ampliada.

Gonçalves, D. L., Barelli, M. A. A., Oliveira, T. C., Santos, P. R. J., Silva, C. R., Poletine, J. P., & Neves, L. G. (2017). Genetic correlation and path analysis of common bean collected from Caceres Mato Grosso State, Brazil. Ciência Rural, 47(8). https://doi.org/10.1590/0103-8478cr20160815.

Graham, R. D. (1984). Breeding for nutritional characteristics in cereals. In: Tinker, P. B., & Lauchli, A. (Ed.) Advances in plant nutrition. New York: Praeger, 57-102.

Luca, E. F. D., Boaretto, A. E., Muraoka, T., & Chitolina, J. C. (2002). Eficiência de absorção e utilização de fósforo (32P) por mudas de eucalipto e arroz. Scientia Agricola, 59 (3), 543-547. https://doi.org/10.1590/S0103-90162002000300020.

Montgomery, D. C., Peck, E. A., & Vining, G.G. (2012). Introduction to Linear Regression Analysis. 5. ed. Wiley: New York, 672 p.

Oliveira, J. T., Ribeiro, I. S., Roque, C. G., Montanari, R., Gava, R., & Teodoro, P. E. (2018). Contribution of morphological traits for grain yield in common bean. Bioscience Journal, 34 (2). https://doi.org/10.14393/BJ-v34n2a2018-39701.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM.https://repositorio.ufsm.br/bitstrea m/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pinheiro, L. S., Silva, R. C., Vieira, R. C., Aguiar, R. O., Nascimento, M. R., Vieira, M. M., & Silva, P. A. (2021). Análise de trilha dos atributos físicos de milho (Zea mays L.) em sistema de cultivo convencional. Research, Society and Development, 10 (1). https://doi.org/10.33448/rsd-v10i1.10832.

Sari, B. G., Lúcio, A. D., Olivoto, T., Krysczun, D. K., Tischler, A. L., & Drebes, L. (2018). Interference of sample size on multicollinearity diagnosis in path analysis. Pesquisa Agropecuária Brasileira, v. 53, n. 6, p. 769-773. https://doi.org/10.1590/s0100-204x2018000600014.

Vitorino, P. J. P., Santos, E. N., Rocha, J. L. A., Marcelino, R. M. O. S., & Santos, L. C. (2020). Crescimento e acúmulo de fósforo em milho sob doses de fosfato radicular e fosfito via foliar. Research, Society and Development, 9 (5). https://doi.org/10.33448/rsd-v9i5.3120.

Published

07/02/2021

How to Cite

OLIVEIRA, R. M. de .; OLIVEIRA , R. A. de .; NEVES, J. C. L. .; OLIVEIRA, E. M. de .; BOTELHO, M. E. .; OLIVEIRA, J. T. de . Relationship between corn harvest index and phosphorus efficiencies through trail. Research, Society and Development, [S. l.], v. 10, n. 2, p. e13510212358, 2021. DOI: 10.33448/rsd-v10i2.12358. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12358. Acesso em: 16 nov. 2024.

Issue

Section

Agrarian and Biological Sciences