Modal analysis of computational guitar model using finite elements and impulse excitation method

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12491

Keywords:

Guitar; Finite elements; Natural frequencies; Impulse; Vibration mode.

Abstract

A guitar is constructed essentially of wood. However, each wood brings with it some specific characteristics. Its acoustic behavior is related to the elastic properties of the materials that compose it. It is known that the elastic properties of materials interfere not only in their mechanical resistance, but also in their dynamic behavior; a structure can vibrate more or less intensely depending on the material that composes it and its elastic properties. The present work analyzes the dynamic behavior of a computational guitar model through modal analysis calculated by the finite element method (MEF) applying boundary conditions that simulate the stiffness of the lateral bands and the tension of the strings on the easel and neck, obtaining answers in terms of natural frequencies and the corresponding forms of vibration modes. And so, compare with frequency responses obtained experimentally through the method of pulse excitation. The results show that the responses in numerical natural frequencies are similar to the values ​​obtained experimentally, indicative of belonging to the same mode of vibration.

References

Almeida, R. N. (2017). O Uso do Tonoscópio como Estímulo Sinestésico Áudio Visual na Estratégia de Desenvolvimento da Percepção Musical: Fundamentação Teórica Para SuaImplementação. Tese de Doutorado em Música. Programa de Pós-Graduação em Música. Centro de Letras e Artes, Universidade federal do Estado do Rio de Janeiro.

Ansys. (2012). Design Exploration User Guide. Ansys Inc.

ASTM International. (2007). Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration; ASTM E 1876, pp 15.

Bader, R. (2005). Computational Mechanics of the Classical Guitar. Springer; 30-80.

Chladni, E. F. F. (1787). Entdeckungen über die Theorie des Klanges. 1, 107, Weidmanns Erben und Reich, Leipzig.

Cossolino L. C. & Pereira A. H. A. (2010). Amortecimento: classificação e métodos de determinação (Informativo Técnico Científico). Universidade de São Carlos.

Curtu, I., Stanciu, M. D., Itu, C. & Grimberg, R. (2008). Numerical Modeling of the Acoustic Plates as Constituents of Stringed Instruments, in Proc. of the 6th International Conference of DAAAM Baltic Industrial Engineering, ISBN 978-9985-59-783-5, Tallinn, Estonia.24-26th April 2008, 53-58.

D’Addário Cordas. (2018). Catálogo. http://www2.musicalexpress.com.br/beta/wp-content/themes/musicalxpress/downloads/catalogo s/catalogo_D%C2%B4Addario-Cordas.pdf.

Filho, J. C. P. (2009) Classificação de Instrumentos Musicais em Configurações Monofônicas e Polifônicas. Dissertação de Mestrado. COPPE/UFRJ.

Gorrostieta-Hurtado, E., Pedraza-Ortega, J. C., Ramos-Arreguin, J. M., Sotomayor-Olmedo A. & Perez-Meneses, J. (2012). Vibration Analysis in the design and construction of an acoustic guitar. International Journal of Physical Sciences, 7(13), pp. 1986-1997.

Jansson, E. V. (1971). A study of acoustical and hologram interferometric measurements of the top plate vibrations of a guitar. Acustica, 25, 95-100.

Jovicic, J. & Jovicic, O. (2000). The Big Red Book of American Lutherie. Thomson-Shore, Dexter, 402-415.

Lai, J. C. S. & Burgess M. A. (1990). Radiation efficiency of acoustic guitars. J. Acoust. Soc. Am., 88(3), 1222-1227.

Lee, M. K., Fouladi, M. H. & Namasiv, S. N. (2018). Mathematical Modelling and Acoustical Analysis of Classical Guitars and Their Soundboards. Advances in Acoustics and Vibration. Vol. 2016, Article ID 6084230. http://dx.doi.org/10.1155/2016/6084230

Löw, A. M. (2012). Identificação Experimental Modal da Caixa Acústica de Um Violão Clássico. (Dissertação de Mestrado em Engenharia Mecânica). Programa de Pós Graduação em Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Brasil.

Melo, R. L. F., Souza, I. C. C, Maia, A. S., Silva, F. M., Queiroz, P. R., Rocha Jr., D., Carvalho, A. C. B., Fernandes, J. P. C., Lima, J. F. V. & Queiroz, L. P. O. (2020). Numerical acquisition of the strain-deformation profile during the passage of heat source in AISI 410, 304L and 430 materials. Research, Society and Development, 9(7):1-22, e286974224.

Otani, L.B., Segundinho, P. G. A., Morales, E. A. M. & Pereira, A. H. A. (2017). Caracterização dos módulos elásticos de madeiras e derivados utilizando a Técnica de Excitação por Impulso (ITC-05 /ATCP). ATCP Engenharia Física.

Patil, K., Baqersad J., Ludwigsen D. & Dong Y. (2016). Extracting vibration characteristics of a guitar using finite element, modal analysis, and digital image correlation techniques. The Journal of the Acoustical Society of America 140, 3211.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica: UFSM.

Ribeiro, R. F. S. (2014). Análise Experimental e Simulação Numérica da Caixa Acústica de um Violão Clássico e seus Componentes com o Método de Elementos Finitos. Dissertação de Mestrado em Engenharia Mecânica. Departamento de Engenharia Mecânica, Universidade Federal Fluminense. Escola de Engenharia Metalúrgica de Volta Redonda, Rio de Janeiro, Brasil.

Roebben, G., Bollen, B., Van Humbeeck, J. & Van Der Biest, O. (1997). Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature. Review of Scientific Instruments 68, 4511. https://doi.org/10.1063/1.1148422

Sloane, I. (1976). Classic Guitar Construction.Omnibus Press, Londres.

Wright, H. (1996). The Acoustics and Psichoacoustics of the Guitar. (Ph.D.Thesis ) Department of Physics and Astronomy. University of Wales.

Zaczéski, M. E., Beckert, C. H., Barros, T. G., Ferreira, A. L. & Freitas, T. C. (2018). Guitar: Acoustic, Structural and Historical Aspects. Revista Brasileira de Ensino de Física. 40(1). 2018 . http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0192.

Published

14/02/2021

How to Cite

TEIXEIRA, P. S.; FEITEIRA, J. F. S.; ALMEIDA, R. de P.; FERREIRA, A. . F. Modal analysis of computational guitar model using finite elements and impulse excitation method . Research, Society and Development, [S. l.], v. 10, n. 2, p. e24410212491, 2021. DOI: 10.33448/rsd-v10i2.12491. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12491. Acesso em: 25 nov. 2024.

Issue

Section

Engineerings