Modal analysis of computational guitar model using finite elements and impulse excitation method
DOI:
https://doi.org/10.33448/rsd-v10i2.12491Keywords:
Guitar; Finite elements; Natural frequencies; Impulse; Vibration mode.Abstract
A guitar is constructed essentially of wood. However, each wood brings with it some specific characteristics. Its acoustic behavior is related to the elastic properties of the materials that compose it. It is known that the elastic properties of materials interfere not only in their mechanical resistance, but also in their dynamic behavior; a structure can vibrate more or less intensely depending on the material that composes it and its elastic properties. The present work analyzes the dynamic behavior of a computational guitar model through modal analysis calculated by the finite element method (MEF) applying boundary conditions that simulate the stiffness of the lateral bands and the tension of the strings on the easel and neck, obtaining answers in terms of natural frequencies and the corresponding forms of vibration modes. And so, compare with frequency responses obtained experimentally through the method of pulse excitation. The results show that the responses in numerical natural frequencies are similar to the values obtained experimentally, indicative of belonging to the same mode of vibration.
References
Almeida, R. N. (2017). O Uso do Tonoscópio como Estímulo Sinestésico Áudio Visual na Estratégia de Desenvolvimento da Percepção Musical: Fundamentação Teórica Para SuaImplementação. Tese de Doutorado em Música. Programa de Pós-Graduação em Música. Centro de Letras e Artes, Universidade federal do Estado do Rio de Janeiro.
Ansys. (2012). Design Exploration User Guide. Ansys Inc.
ASTM International. (2007). Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration; ASTM E 1876, pp 15.
Bader, R. (2005). Computational Mechanics of the Classical Guitar. Springer; 30-80.
Chladni, E. F. F. (1787). Entdeckungen über die Theorie des Klanges. 1, 107, Weidmanns Erben und Reich, Leipzig.
Cossolino L. C. & Pereira A. H. A. (2010). Amortecimento: classificação e métodos de determinação (Informativo Técnico Científico). Universidade de São Carlos.
Curtu, I., Stanciu, M. D., Itu, C. & Grimberg, R. (2008). Numerical Modeling of the Acoustic Plates as Constituents of Stringed Instruments, in Proc. of the 6th International Conference of DAAAM Baltic Industrial Engineering, ISBN 978-9985-59-783-5, Tallinn, Estonia.24-26th April 2008, 53-58.
D’Addário Cordas. (2018). Catálogo. http://www2.musicalexpress.com.br/beta/wp-content/themes/musicalxpress/downloads/catalogo s/catalogo_D%C2%B4Addario-Cordas.pdf.
Filho, J. C. P. (2009) Classificação de Instrumentos Musicais em Configurações Monofônicas e Polifônicas. Dissertação de Mestrado. COPPE/UFRJ.
Gorrostieta-Hurtado, E., Pedraza-Ortega, J. C., Ramos-Arreguin, J. M., Sotomayor-Olmedo A. & Perez-Meneses, J. (2012). Vibration Analysis in the design and construction of an acoustic guitar. International Journal of Physical Sciences, 7(13), pp. 1986-1997.
Jansson, E. V. (1971). A study of acoustical and hologram interferometric measurements of the top plate vibrations of a guitar. Acustica, 25, 95-100.
Jovicic, J. & Jovicic, O. (2000). The Big Red Book of American Lutherie. Thomson-Shore, Dexter, 402-415.
Lai, J. C. S. & Burgess M. A. (1990). Radiation efficiency of acoustic guitars. J. Acoust. Soc. Am., 88(3), 1222-1227.
Lee, M. K., Fouladi, M. H. & Namasiv, S. N. (2018). Mathematical Modelling and Acoustical Analysis of Classical Guitars and Their Soundboards. Advances in Acoustics and Vibration. Vol. 2016, Article ID 6084230. http://dx.doi.org/10.1155/2016/6084230
Löw, A. M. (2012). Identificação Experimental Modal da Caixa Acústica de Um Violão Clássico. (Dissertação de Mestrado em Engenharia Mecânica). Programa de Pós Graduação em Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Brasil.
Melo, R. L. F., Souza, I. C. C, Maia, A. S., Silva, F. M., Queiroz, P. R., Rocha Jr., D., Carvalho, A. C. B., Fernandes, J. P. C., Lima, J. F. V. & Queiroz, L. P. O. (2020). Numerical acquisition of the strain-deformation profile during the passage of heat source in AISI 410, 304L and 430 materials. Research, Society and Development, 9(7):1-22, e286974224.
Otani, L.B., Segundinho, P. G. A., Morales, E. A. M. & Pereira, A. H. A. (2017). Caracterização dos módulos elásticos de madeiras e derivados utilizando a Técnica de Excitação por Impulso (ITC-05 /ATCP). ATCP Engenharia Física.
Patil, K., Baqersad J., Ludwigsen D. & Dong Y. (2016). Extracting vibration characteristics of a guitar using finite element, modal analysis, and digital image correlation techniques. The Journal of the Acoustical Society of America 140, 3211.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica: UFSM.
Ribeiro, R. F. S. (2014). Análise Experimental e Simulação Numérica da Caixa Acústica de um Violão Clássico e seus Componentes com o Método de Elementos Finitos. Dissertação de Mestrado em Engenharia Mecânica. Departamento de Engenharia Mecânica, Universidade Federal Fluminense. Escola de Engenharia Metalúrgica de Volta Redonda, Rio de Janeiro, Brasil.
Roebben, G., Bollen, B., Van Humbeeck, J. & Van Der Biest, O. (1997). Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature. Review of Scientific Instruments 68, 4511. https://doi.org/10.1063/1.1148422
Sloane, I. (1976). Classic Guitar Construction.Omnibus Press, Londres.
Wright, H. (1996). The Acoustics and Psichoacoustics of the Guitar. (Ph.D.Thesis ) Department of Physics and Astronomy. University of Wales.
Zaczéski, M. E., Beckert, C. H., Barros, T. G., Ferreira, A. L. & Freitas, T. C. (2018). Guitar: Acoustic, Structural and Historical Aspects. Revista Brasileira de Ensino de Física. 40(1). 2018 . http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0192.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Paulo Sérgio Teixeira; José Flávio Silveira Feiteira; Rangel de Paula Almeida; Alexandre Furtado Ferreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.