Phytotoxic effects of Aeschynomene fluminensis Vell. on the initial growth of weeds and cultivated plants

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12551

Keywords:

Inhibition; Fractions; Hypocotyls; Root; Soybean.

Abstract

Allelopathy is analyzed as an alternative to herbicides due to the inhibitory or beneficent activities of its compounds with other organisms. Current paper discusses the effects of Aeschynomene fluminensis Vell. fractions on cultivated plant species, Lactuca sativa L. and Glycine max (L.) Merril, and on weeds, Ipomoea grandifolia (Dammer) O’Donnel and Digitaria insularis (L.) Fedde. Aqueous fractions at 0.80; 0.40; 0.20 and 0.10 mg mL-1 concentrations were employed for initial growth tests. Seeds were pre-germinated in distilled water and transferred to petri plates with separate fractions at different concentrations. Plates were maintained for 48 h in a germination chamber at 25°C for L. sativa and I. grandifolia and at 30°C for G.max and D. insularis. The length of hypocotyl (LH) and root (LR) was measured and LR and foliar length (LF) were taken for D. insularis seedlings. Parameters were employed to calculated inhibition percentage. Plants with morphological changes were fixed and analyzed anatomically. Results revealed LH and LR inhibition of lettuce seedlings in fractions with highest concentration rates. The same has been reported in the case of I. grandifolia. Butanolic, methanolic and chloroform fractions did not affect negatively soybean seedlings but they inhibited D. insularis seedlings´ LR. A. fluminensis fractions, especially at higher concentrations, inhibited seedlings´ growth and confirmed their phytotoxic capacity.

Author Biographies

Larissa Éllen Coelho, State University of Maringá

Biologist, botanical area. It studies phytotoxic effects of organic compounds on target plants.

Silvana Maria de Oliveira, State University of Maringá

Researcher in the Chemistry Department of the State University of Maringá. Studies the chemistry of natural products and organic synthesis.

Luiz Antonio de Souza, State University of Maringá

Researcher at the Graduate Program in Comparative Biology. Research area: plant anatomy.

Lindamir Hernandez Pastorini, State University of Maringa

Researcher at the Biological Sciences Center of UEM. I research the physiological aspects of plants, germination, establishment of native tree species and allelopathy.

References

Barreiro, A. P., Delachiave, M. E. A., & Souza, F. S. (2005). Efeito alelopático de extratos de parte aérea de barbatimão [Stryphnodendron adstringens (Mart.) Coville] na germinação e desenvolvimento da plântula de pepino. Revista Brasileira de Plantas Medicinais, 8(1), 4-8.

EMBRAPA. (2021). Embrapa soja: soja em números (SAFRA 2019/20). https://www.embrapa.br/soja/cultivos/soja1/dados-economicos.

Faria, T. M., Júnior, F. G. G., Sá, M. E., & Cassiolato, A. M. R. (2009). Efeitos alelopáticos de extratos vegetais na germinação, colonização micorrízica e crescimento inicial de milho, soja e feijão. Revista Brasileira de Ciência do Solo, 33(6), 1625-1633.

Formagio, A. S. M., Masetto, T. E., Vieira, M. C., Zárate, N. A. H., De Matos, A. I. N., & Volobuff, C. R. F. (2014). Potencial alelopático e antioxidante de extratos vegetais. Bioscience Journal, 30(supplement 2), 629-638.

Franco, D. M., Silva, E. M., Saldanha, L. L., Adachi, S. A., Schley, T. R., Rodrigues, T. M., Dokkedal, A. L., Nogueira, F. T. S., & Almeida, L. F. R. (2015). Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III. Journal of Plant Physiology, 188, 89-95. https://doi.org/10.1016/j.jplph.2015.09.009

Guerrits, P. O., & Horobin, R. W. (1991). The application of glycol methacrylate in histotechnology: some fundamental principles. Groningen, Netherlands: University Groningen.

Gindri, D. M., Coelho, C. M. M., Uarrota, V. G., & Rebelo, A. M. (2020). Herbicidal bioactivity of natural compounds from Lantana camara on the germination and seedling growth of Bidens pilosa. Pesquisa Agropecuária Tropical, 50, e57746. https://doi. 10.1590/1983-40632020v5057746

Ignoato, M. C., Fabrao, R. M., Schuquel, I. T. A., Botelho, M. F. P., Santin, S. M. O., Arruda, L. L. M., Bersani-Amado, C. A., & Souza, M. C. (2012). Estudo fitoquímico e avaliação da atividade anti-inflamatória de Aeschynomene fluminensis vell. (Fabaceae). Química Nova, 35 (11), 2241-2244.

Imatomi, M., Novaes, P., Miranda, M. A. F. M., & Gualtieri, S. C. J. (2015). Phytotoxic effects of aqueous leaf extracts of four Myrtaceae species on three weeds. Acta Scientiarum. Agronomy, 37(2), 241-248. https://doi. 10.4025/actasciagron.v37i2.19079

Jabran, K., Mahajan, G., Sardana, V., & Chauhan, S. B. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57e65. http://dx.doi.org/10.1016/j.cropro.2015.03.004

Johansen, D. A. (1940). Plant michotechnique. McGraw-hill Book Company Inc.

Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27,137-138.

Levizou, E., Karageorgou, P. K., Petropoulou, G., Grammatikopoulos, G., & Manetas, Y. (2004). Induction of ageotropic response in lettuce radical growth by epicuticular flavonoid aglycones of Dittrichia viscosa. Biologia Plantarum, 48,305–307.

Lima, G. P., Fortes, A. M. T., Mauli, M. M., Rosa, D. M., & Marques, D. S. (2009). Alelopatia de capim-limão (Cymbopogon citratus) e sabugueiro (Sambucus australis) na germinação e desenvolvimento inicial de corda-de-viola (Ipomoea grandifolia). Publicatio UEPG. Ciências Exatas e da Terra, 15 (2), 121-127.

Lorteau, M. A., Ferguson, B. J., & Guinel, F. C. (2001). Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiologia plantarum, 112, 421-428.

Lorenzi, H. (2006). Manual de identificação e controle de plantas daninhas: plantio direto e convencional. Nova Odessa, Instituto Plantarum.

O'Brien, T. P., Feder, N., & Mccully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue. Protoplasma, 2, 368-373.

Oliveira, S. C. C., Gualtieri, S. C. J., Domínguez, F. A. M., Molinillo, J. M. G., & Montoya, R. V. (2012). Estudo fitoquímico de folhas de Solanum lycocarpum A. St.-Hil (Solanaceae) e sua aplicação na alelopatia. Acta Botanica Brasilica, 26 (3), 607-18. https://doi.org/10.1590/S0102-33062012000300010

Peres, M. T. L. P., Silva, L. B. S., Faccenda, O., & Hess, S. C. (2004). Potencial alelopático de espécies de Pteridaceae (Pteridophyta). Acta Botanica Brasilica, 18(4), 723-730.

Pires, N. M., Souza, I. R. P., Prates, H. T., Faria, T. C. L., Filho, I. A. P., & Magalhães, P. C. (2001). Efeito do extrato aquoso de leucina sobre o desenvolvimento, índice mitótico e atividade da peroxidase em plântulas de milho. Revista Brasileira de Fisiologia Vegetal, 13(1), 55-65.

Silva, C. B., Oliveira, M., Dias, J. F., Zanin, S. M. W., Santos, G. O., Cândido, A. C. S., Peres, M. T. L. P., Simionatto, E., Miguel, O. G., & Miguel, M. D. (2016). Atividade alelopática dos lixiviados de Asemeia extraaxillaris (Polygalaceae) sobre o crescimento de Ipomoea cordifolia. Revista Brasileira de Plantas Medicinais, 18(1), 215-222. https://doi.org/10.1590/1983-084X/14_093

Soares, G. L. G., Scalon, V. R., Pereira, T. O., & Vieira, D. A. (2002). Potencial alelopático do extrato aquoso de folhas de algumas leguminosas arbóreas brasileiras. Revista Floresta e ambiente, 9(1), 199-226.

Sousa, S. F. G., Riquetti, N. B., Tavares, L. A. F., Marasca, I., & Junior, R. A. (2011). Efeito da utilização de extratos vegetais sobre a germinação de três espécies de plantas espontâneas. Revista Científica Eletrônica de Agronomia, 18(1), 29-33.

Souza, V. C., & Lorenzi, H. (2005). Botânica Sistemática: Guia Ilustrado para Identificação das Famílias de Angiospermas da Flora Brasileira, Baseado em APG II. Nova Odessa, Instituto Plantarum de Estudos da Flora Ltda.

Taylor, L. P., & Grotewold, E. (2005). Flavonoids as developmental regulators. Current Opinon Plant Biology, 8 (3), 317-23. https://doi.org/10.1016/j.pbi.2005.03.005.

Ximenez, G. R., Santin, S. M. O., Ignoato, M. C., Souza, L. A., & Pastorini, L. H. (2019). Phytotoxic potential of the crude extract and leaf fractions of Machaerium hirtum on the initial growth of Euphorbia heterophylla and Ipomoea grandifolia. Planta Daninha, 37, e019180433.

https://doi.org/10.1590/s0100-83582019370100015

Yan, Z. Q., Guo, H. R., Yang, J. Y., Liu, Q., Jin, H., Xu, R., Cui, H. Y., & Qin, B. (2014). Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae). Phytochemistry, 106, 61-68. https://doi.org/10.1016/j.phytochem.2014.07.013

Weston, L. A., & Mathesius, U. (2013). Flavonoids: Their structure, biosynthesis and role in the rizosphere, including allelopathy. Journal of Chemical Ecology, 39, 283-297. https://doi.org/10.1007/s10886-013-0248-5

Zhang, Y-J., Lynch, J. P., & Bown, K. M. (2003). Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. Journal Experimental Botany, 54 (391), 2351-2361. https://doi.org/10.1093/jxb/erg250

Downloads

Published

19/02/2021

How to Cite

COELHO, L. Éllen; OLIVEIRA, S. M. de; SOUZA, L. A. de; PASTORINI, L. H. Phytotoxic effects of Aeschynomene fluminensis Vell. on the initial growth of weeds and cultivated plants. Research, Society and Development, [S. l.], v. 10, n. 2, p. e37110212551, 2021. DOI: 10.33448/rsd-v10i2.12551. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12551. Acesso em: 4 nov. 2024.

Issue

Section

Agrarian and Biological Sciences