Evaluation of the influence of algal biomass on post-treatment of domestic sewage in polishing ponds

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12749

Keywords:

Chlorophyll-a; Stabilization ponds; Biological treatment.

Abstract

The present study evaluated the influence of algal biomass of post-treatment of domestic sewage in different polishing ponds. For this purpose, the research was carried out at the Experimental Station for Biological Treatment of Sanitary Sewers (EXTRABES), located in the city of Campina Grande-PB, in two experimental phases. In the first phase, the experimental system consisted of four lagoons, in which two were monitored with continuous feeding (LC57 and LC45) and two with semi continuous feeding (LB57 and LB45). In the second experimental phase, the performance of three lagoons fed in batches (LBT45 and LB245), and one fed continuously (LC245) was evaluated. It was found that the determination of chlorophyll-a concentrations could provide an estimate of phytoplankton biomass, however, they were easily altered, due to variations in high light incidence, temperature, organic charge and HRT. It was observed that the digested effluent and the algae biomass from the overflow pond with 2.4-day HDT in the first phase of the study, provided a greater development of the phytoplankton community. During the second phase, the polishing ponds fed in sequential batches (LB245 and LBT45) showed higher concentrations of chlorophyll-a compared to the previous experimental phase. It was concluded that the polishing ponds fed in batch regime stood out for presenting superior removals to the ponds with continuous and semi continuous feeding, showing them as promising in the treatment of domestic sewage. In addition to obtaining excellent results, mainly in the removal of nutrients, it was possible to treat a larger amount of affluent in less time of operation.

References

Ahmad, A. L., Mat Yasin, N. H. M., Derek, C. J. C., & Lim J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: a review. Renewable and Sustainable Energy Reviews, 15, 584 – 593.

Amengual-Morro, C., Niell, G. M., & Martínez-Taberner, A. (2012). Phytoplankton as bioindicator for waste stabilization ponds. J Environ Manage, 95: 571-576.

Amon, T. et al. (2017). Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, v. 118 (1), 173–182.

Apha, Awwa. WPCF. Standard methods for the examination of water and wastewater. (22a ed.), Washington, DC. American Public Health Association. American Water Works Association, Water Pollution control Federation, 2012.

Bahadar, A, & KhaN, M. Bilal. (2013). Progress in energy from microalgae: A review. Renewable And Sustainable Energy Reviews, 27, 128-148.

Barroso, J. C. A. J. Produção de biomassa de algas em lagoas de alta taxa alimentadas com esgoto sanitário com posterior separação por flotação por ar dissolvido. Universidade Federal do Rio Grande do Sul, 2015.

Bastos, R. K. X., Dornelas, F. L., Rios, E. N., Ruas, D. B., & Okano, W. Y. Dinâmica da qualidade da água e da comunidade planctônica em lagoas de polimento. Estudo de caso no sudeste brasileiro. Revista AIDIS, 3(1), 97-107, 2010.

Benemann, J. R., & Oswald, W. J. Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. Final report to the Department of Energy, Pittsburgh Energy Technology Center, p. DOE/PC/93204-T5, 1996.

Besha, A. T., Gebreyohannes, A. Y., Tufa, R. A., Bekele, D. N., Curcio, E., & Giorno, L. (2017). Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering, 5, 2395–2414.

Branco, S. M. Hidrobiologia Aplicada à Engenharia Sanitária. CETESB. (2a ed.), 1978.

Brasil. 2018 Relatório do balanço energético nacional. https://unica.com.br/wp-content/uploads/2019/06/Relatoio-Sintese.pdf

Buchauer, K. A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment process. Water SA, 24(1), 49-56. 1998.

Camargo Valero, M. A. Nitrogen transformation pathways and removal mechanisms in domestic wastewater treatment by maturation ponds. Phd Thesis. School of Civil Engineering. The University of Leeds, Leeds. 156p. 2008.

Cavalcanti, P. F. Aplicação de reatores UASB e lagoas de polimento no tratamento de esgoto doméstico. João Pessoa: Gráfica Santa Marta, 2009. 172p.

Chi, Z., Zheng, Y., Jiang, A., & Chen, S. (2011). Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotech, 165: 442-453.

Couto, E. A., Calijuri, M. L., Asseman, Y, P. P., Tango, M. D., & Santiago, A. F. (2015). Influence of solar radiation on nitrogen recovery by the biomass grown in high rate ponds. Ecological Engineering, 81, 140-14.

Craggs, R. J. Advanced integrated wastewater ponds. In A. Shilton, Pond Treatment Technology, IWA Scientific and Technical Report Series. IWA, London, 282-310. 2005.

Falco, P. B. Estrutura da comunidade microbiana (algas e bactérias) em um sistema de lagoas de estabilização em duas escalas temporais: nictimeral e sazonal. 2005. 137f. Tese (Doutorado em Hidráulica e Saneamento). Escola de Engenharia de São Carlos, Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-20042006-081717/pt-br.php

Gonzalez-fernandez, C., Molinuevo-Salces, B., Garcia Gonzalez, M. C. (2011). Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresource Technology, 102(2), 960-966.

Gris, L. R. S. et al. Produção de microalgas em fotobiorreator airlift. IX Oktoberfórum – PPGEQ, 2010.

Hoh, D., Watson, S., & Kan, E. (2016) Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem Eng 287: 466-473.

Jones, J. G. Aguide to Methods in freshwatus, London, Freshwater Biological Association, 39, 112p.

Kardol, P., Campany, C. E., Souza, L., Norby, R. J., Weltzin, J. F., & Classen, A. T. (2010). Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Global Change Biology, 16(10), 2676-2687.

Kassab, G., Halalsheh, M., Klapwijk, A., Fayyad, M., & Van Lier, J. B. (2010). Sequential anaerobic–aerobic treatment for domestic wastewater – A review. Bioresource Technology (101), 3299–3310.

Konig, A. Biologia de lãs lagunas de estabilización: algas. In: Sistemas de Lagunas de Estabilización. Mendonça, S. R., McGraw-Hill Santa Fé de Bogotá, D. C., Colômbia, Editorial Nomos S.A. 2000.

Larsdotter, K. Wastewater treatment with microalgae – a literature review. VATTEN, 62: 31-38, 2006.

Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101, 75 – S77.

Leite, V. D. et al. (2005). Tratamento de águas residuárias em lagoas de estabilização para aplicação na fertirrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, 9, 71-75.

Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.

Low-decarie, E., Fussmann, G. F., & Bell, G. (2011). The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology, 17(8), 2525-2535.

Low-decarie, E., Bell, G., Fussmann, G. F. (2015).CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia, v. 177(3), 875-883.

Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, D. P. Microbiologia de Brock. Traduzido de Brock Biology of Microorganisms. (12a ed.), Artmed, 2010.

Makarevičienė, V., Andrulevičiūtė, V, Skorupskaitė V, & Kasperovičienė, J. (2011).Cultivation of Microalgae Chlorella sp. and Scenedesmus sp. as a Potentional Biofuel Feedstock . Environmental Research, Engineering and Management. 3(57), 21 – 27

Mara, D. Domestic wastewater treatment in developing countries. London: Earthscan, 2003. 293p.

Matheus, C. L., Gianotti, E. P., & Morais, A. G (1989). Correlação entre clorofila, STV e DQO. Revista DAE, 49 (154), 20-23.

Metcalf & Eddy. Wasterwater Engineering: Treatment and reuse. (5a ed.), McGraw-Hill International edition, 2012.

Olguín, E. J. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv, 30: 1031-1046, 2012.

Park, J. B. K. E Craggs, R. J. (2011). Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science and Technology, 63(10), 2403-2410.

Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water research. 4 5.

Pearson, H., Microbial Interactions in facultative and maturation ponds. In: Mara, D., Horan, N. J. The Hand Book of Water and Wastewater Microbiology. London: Academic Press, 2005. 449‐458.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Perez-Garcia, O. et al. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11-36.

Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25.

Ramos, L. P. et al. (2017). Biodiesel: Matérias-Primas, Tecnologias de Produção e Propriedades Combustíveis. Revista Virtual de Quimica, 9(1), 317–369.

Ribeiro, P. C. Análise de fatores que influenciam a proliferação de cianobactérias e algas em lagoas de estabilização. 2007. 106f. Dissertação (Mestrado em Engenharia Civil), Universidade Federal de Campina Grande, Campina Grande - PB, 2007.

Richmond, A. Progress in Phycological Research, Round/ Chapman eds., Biopress Ltda., 7: 1-62, 2004.

Soldatelli, V. F., & Schwarzbold, A. (2010). Comunidade fitoplanctônica em lagoas de maturação, Caxias do Sul, Rio Grande do Sul, Brasil. Iheringia Série Botânica, 65 (1), 75-86.

Santiago, A. F. Avaliação Do Desempenho De Lagoas De Alta Taxa No Tratamento De Esgoto Pré-Desinfectado Submetidas a Diferentes Níveis De Radiação Solar. [s.l.] Universidade Federal de Viçosa, 2013.

Shilton, A. Pond Treatment Technology. IWA Publishing. London, 2005, 479p.

Subashchandrabose, S. R. et al. (2011). Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 29(6), 896-907.

Sutherland, D. L., Howard-Williams, C., Turnbull, M. H., Broady, P. A., & Craggs, R. J. (2015). The effects of CO2 addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal. Water Research, 70, 9-26.

Tabatabaei, M., Tohidfar, M., Jouzani, G. S., Safarnejad, M., & Pazouki, M. (2011). Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran. Renewable And Sustainable Energy Reviews, 15, 1918–1927.

Von Sperling, M. Lagoas de Estabilização: Princípios do Tratamento Biológico de Águas Resíduárias. Belo Horizonte: UFMG, 2002.196p.

Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Schuster, G. L., Chevallier, F., & Tao, S. (2016). Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. 121(10), Journal of Geophysical Research. 5948-5971.

Zhang, C. M.; Mao, Z. G.; Wang, X.; Zhang, J. H.; Sun, F. B.; & Tang, L. (2010). Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations. Bioprocess Biosyst Eng, 33: 1067-1075.

Published

18/02/2021

How to Cite

ALBUQUERQUE, M. V. da C.; SILVA , M. C. C. de P. e .; CARTAXO, A. da S. B. .; RAMOS , R. de O. .; RODRIGUES, R. M. M. .; SÁTIRO, J. R. .; LOPES, W. S. .; LEITE, V. D. .; SOUSA, J. T. de . Evaluation of the influence of algal biomass on post-treatment of domestic sewage in polishing ponds. Research, Society and Development, [S. l.], v. 10, n. 2, p. e34910212749, 2021. DOI: 10.33448/rsd-v10i2.12749. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12749. Acesso em: 16 nov. 2024.

Issue

Section

Engineerings