Correlation between changes in the gastrointestinal microbiota with the onset and complications of Parkinson's disease: the role of inflammatory cytokines in the bidirectional gut-brain axis

Authors

  • Pablo Cleber Sousa Lopes Sales Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0003-2617-9398
  • Almir Vieira de Sousa Neto Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0003-0620-3899
  • Lahuan Araujo Costa Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-2490-2223
  • Mikhail de Morais Veras da Fonseca Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-8667-2152
  • Gabriela de Souza Mendonça Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-7922-5995
  • Ligia Viana de Araújo Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-0674-4604
  • Vitória Stefanny Cunha Araújo Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-3901-2207
  • Ana Maria Santos Cardoso Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0001-7092-2295
  • Paulo Victor de Sousa Jordão Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0001-9227-6159
  • Brenda Dias Araujo Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0001-5140-0934
  • Charles Ponte de Sousa Filho Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-0943-410X
  • Louise Ribeiro Teixeira Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0001-7378-1096
  • José Guilherme de Oliveira Rodrigues Ferreira Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-2617-5146
  • Rafaela Costa Pacheco Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0001-8477-8298
  • André Pessoa Silva Bastos Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-1188-0766
  • Brenda Ellen Meneses Cardoso Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-5982-5985
  • Larruama Soares Figueiredo de Araújo Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-0902-9200
  • Bianca Sampaio Lima Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-0574-4936
  • Vivian Saeger Pires Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP. https://orcid.org/0000-0002-8852-0363
  • Luan Kelves Miranda de Souza Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí, IESVAP; Universidade Federal do Piauí https://orcid.org/0000-0002-8019-4022

DOI:

https://doi.org/10.33448/rsd-v10i2.12788

Keywords:

Microbiota; Parkinson's Disease; Neurodegeneration; Inflammation; Cytokines.

Abstract

Humans developed a symbiotic relationship with their gut microbiota, a complex microbial community made up of bacteria, archaea, protists and viruses, including bacteriophages. The enteric nervous system (SNE) is a gateway to bidirectional communication between the brain and the intestine, mainly through the vagus nerve (VN). Therefore, environmental exposure plays a fundamental role in both the composition and functionality of the intestinal microbiome and can contribute to susceptibility to neurodegenerative disorders, such as Parkinson's disease (PD). This is a systematic review of the literature using the data bases PUBMED, Scielo and MEDLINE, using the descriptors present in the Health Sciences Descriptors (DeCS): Parkinson's disease, cytokines, microbiota and gastrointestinal tract. It can be mentioned that the neuropathological characteristic of PD is the generalized appearance of alpha-synuclein (α-Syn) aggregates in the central and peripheral nervous systems, including the SNE. Many studies suggest that intestinal toxins can induce the formation of α-Syn aggregates in the SNE, which can then be transmitted to the CNS via the VN. PD is strongly associated with aging and its negative effects on homeostatic mechanisms that protect against inflammation, oxidative stress and protein malfunction. Thus, this study intends to carry out, based on analyzes of inflammatory cytokines and intestinal microbiota, how dysbiosis can contribute to the onset or complications of PD, promoting a correlation between clinical and laboratory manifestations and prognosis, as well as describing the main mechanisms causal factors that are still poorly understood.

References

Camacho-Soto, A., Gross, A., Nielsen, S. S., Dey, N., & Racette, B. A. (2018). Inflammatory bowel disease and risk of Parkinson's disease in Medicare beneficiaries. Parkinsonism & related disorders, 50, 23-28.

Darby, T. M., Owens, J. A., Saeedi, B. J., Luo, L., Matthews, J. D., Robinson, B. S., ... & Jones, R. M. (2019). Lactococcus Lactis Subsp. cremoris is an efficacious beneficial bacterium that limits tissue injury in the intestine. Iscience, 12, 356-367.

Gazerani, P. (2019). Probiotics for Parkinson’s disease. International journal of molecular sciences, 20(17), 4121.

Gogokhia, L., Buhrke, K., Bell, R., Hoffman, B., Brown, D. G., Hanke-Gogokhia, C., ... & Round, J. L. (2019). Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell host & microbe, 25(2), 285-299.

Gründemann, J., Schlaudraff, F., Haeckel, O., & Liss, B. (2008). Elevated α-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. Nucleic acids research, 36(7), e38.

Hasegawa, S., Goto, S., Tsuji, H., Okuno, T., Asahara, T., Nomoto, K., ... & Hirayama, M. (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PloS one, 10(11), e0142164.

Kim, D. S., Choi, H. I., Wang, Y., Luo, Y., Hoffer, B. J., & Greig, N. H. (2017). A new treatment strategy for Parkinson's disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway. Cell transplantation, 26(9), 1560-1571.

Lee, H. S., Lobbestael, E., Vermeire, S., Sabino, J., & Cleynen, I. (2021). Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut, 70(2), 408-417.

Miraglia, F., & Colla, E. (2019). Microbiome, Parkinson’s disease and molecular mimicry. Cells, 8(3), 222.

Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology, 14(5), 329-342.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.

Radhakrishnan, D. M., & Goyal, V. (2018). Parkinson's disease: A review. Neurology India, 66(7), 26.

Santos, S. F., De Oliveira, H. L., Yamada, E. S., Neves, B. C., & Pereira Jr, A. (2019). The gut and Parkinson's Disease—a bidirectional pathway. Frontiers in neurology, 10, 574.

Souza, C. F. M., Almeida, H. C. P., Sousa, J. B., Costa, P. H., Silveira, Y. S. S., & Bezerra, J. C. L. (2011). A doença de parkinson e o processo de envelhecimento motor. Revista Neurociências, 19(4), 718-723.

Stefanis, L. (2012). α-Synuclein in Parkinson's disease. Cold Spring Harbor perspectives in medicine, 2(2), a009399.

Strandwitz, P., Kim, K. H., Terekhova, D., Liu, J. K., Sharma, A., Levering, J., ... & Lewis, K. (2019). GABA-modulating bacteria of the human gut microbiota. Nature microbiology, 4(3), 396-403.

Tysnes OB, Storstein A. Epidemiology of Parkinson's disease (2017). J Neural Transm. 124 (8), 901-905.

Published

26/02/2021

How to Cite

SALES, P. C. S. L. .; SOUSA NETO, A. V. de .; COSTA, L. A. .; FONSECA, M. de M. V. da .; MENDONÇA, G. de S. .; ARAÚJO, L. V. de .; ARAÚJO, V. S. C. .; CARDOSO, A. M. S. .; JORDÃO, P. V. de S. .; ARAUJO, B. D. .; SOUSA FILHO, C. P. de .; TEIXEIRA, L. R. .; FERREIRA , J. G. de O. R. .; PACHECO, R. C. .; BASTOS, A. P. S. .; CARDOSO, B. E. M. .; ARAÚJO, L. S. F. de .; LIMA, B. S. .; PIRES, V. S. .; SOUZA, L. K. M. de . Correlation between changes in the gastrointestinal microbiota with the onset and complications of Parkinson’s disease: the role of inflammatory cytokines in the bidirectional gut-brain axis. Research, Society and Development, [S. l.], v. 10, n. 2, p. e51310212788, 2021. DOI: 10.33448/rsd-v10i2.12788. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12788. Acesso em: 19 apr. 2024.

Issue

Section

Review Article