Resistance mechanisms of Cryptococcus spp. and plant compounds as tools to combat them

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12819

Keywords:

Antimicrobial extracts; Resistance of Cryptococcus spp.; Toxicity of antimicrobial drugs; Mechanism of action of antimicrobial plants.

Abstract

Cryptococcus is a genus of dimorphic basidiomycete fungi found in the form of yeasts and filaments. Cryptococcosis has as main etiological agents the species Cryptococcus neoformans and Cryptococcus gattii. This disease is considered a public health problem and has becoming more alarming because of the limitations of antimicrobials available to its treatment, in addition to an increase in reports of fungal resistance. In this sense, the present review sought to survey information on the resistance mechanisms of Cryptococcus spp. against the main drugs used in cryptococcosis therapy as well as on the antimicrobial activities of plants against these fungi. Studies have reported that several mechanisms may be involved in fungal resistance to drugs including drug inactivation by enzymes, expression of efflux pumps and others drug transporters, as well as changes in the drug target and/or implementation of alternative metabolic pathways. As an alternative to conventional antimicrobials, substances and molecules extracted from plants have demonstrated potential for controlling these pathogens. These phytochemicals can trigger the inhibition and/or death of Cryptococcus through morphological changes on fungi cells, inhibition of ergosterol synthesis, cell leakage, capsular decrease, interference in cell division, reduction of activity of several enzymes such as laccase and urease, inhibition of biofilm formation, among others. In this sense, plants are an important source of bioactive compounds with antimicrobial activity that can be studied in the search for new drugs that are increasingly effective, specific and less toxic in the control of cryptococcosis.

References

Abu-Darwish, M. T., Cabral, C., Ferreira, I. T., Gonçalves, M. J., Cavaleiro, C., Cruz, M. T., ... & Salgueiro, L. (2013). Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed research international, 2013.

Ajesh, K., & Sreejith, K. (2012). Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance. Mycopathologia, 174(5-6), 409-419.

Albernaz, L. C., De Paula, J. E., Romero, G. A. S., Silva, M. D. R. R., Grellier, P., Mambu, L., & Espindola, L. S. (2010). Investigation of plant extracts in traditional medicine of the Brazilian Cerrado against protozoans and yeasts. Journal of ethnopharmacology, 131(1), 116-121.

Almeida Freires, I., Murata, R. M., Furletti, V. F., Sartoratto, A., de Alencar, S. M., Figueira, G. M., ... & Rosalen, P. L. (2014). Coriandrum sativum L.(coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One, 9(6), e99086.

Alspaugh, J. A. (2015). Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genetics and Biology, 78, 55-58.

Alves, J. C., Ferreira, G. F., Santos, J. R., Silva, L. C., Rodrigues, J. F., Neto, W., ... & Guzzo, L. S. (2017). Eugenol induces phenotypic alterations and increases the oxidative burst in Cryptococcus. Frontiers in microbiology, 8, 2419.

Anyanwu, M. U., & Okoye, R. C. (2017). Antimicrobial activity of Nigerian medicinal plants. Journal of intercultural Ethnopharmacology, 6(2), 240.

Azevedo, R. V., Rizzo, J., & Rodrigues, M. L. (2016). Virulence factors as targets for anticryptococcal therapy. Journal of fungi, 2(4), 29.

Bahn, Y.-S.; Jung, K.-W. (2013). Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryotic cell, 12.12: 1564-1577. DOI: 10.1128/EC.00218-13

Bajwa, U., & Sandhu, K. S. (2014). Effect of handling and processing on pesticide residues in food-a review. Journal of food science and technology, 51(2), 201-220.

Baker, R. D., & Haugen, R. K. (1955). Tissue changes and tissue diagnosis in cryptococcosis. A study of 26 cases. American journal of clinical pathology, 25(1).

Banerjee, A., Singh, A. D., Batabyal, K., Debnath, C., & Samanta, I. (2020). Occurrence of Azole Resistant and Melanin Producing Cryptococcusneoformans in Wild Birds Kept in a Zoological Garden. Israel Journal of Veterinary Medicine, 75, 4.

Basso Jr, L. R., Gast, C. E., Bruzual, I., & Wong, B. (2015). Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans. Journal of Antimicrobial Chemotherapy, 70(5), 1396-1407.

Bastos, R. W., Carneiro, H. C. S., Oliveira, L. V. N., Rocha, K. M., Freitas, G. J. C., Costa, M. C., ... & Santos, D. A. (2018). Environmental triazole induces cross-resistance to clinical drugs and affects morphophysiology and virulence of Cryptococcus gattii and C. neoformans. Antimicrobial agents and chemotherapy, 62(1).

Ben-Ami, R., Zimmerman, O., Finn, T., Amit, S., Novikov, A., Wertheimer, N., ... & Berman, J. (2016). Heteroresistance to fluconazole is a continuously distributed phenotype among Candida glabrata clinical strains associated with in vivo persistence. MBio, 7(4).

Bennett, E. J. Antimicrobianos (continuac¸ao) Agentes antif ˜ ungicos. In ´ As bases farmacologicas da terapêuticas; Gilman, A. G.; Goodman, L. S.; Gilman A., Ed.; McGraw-Hill Interamericana do Brasil: Rio de Janeiro, 2003; pp 975–979.

Berman, J., & Krysan, D. J. (2020). Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 1-13.

Billmyre, R. B., Clancey, S. A., Li, L. X., Doering, T. L., & Heitman, J. (2020). 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nature communications, 11(1), 1-9.

Branco, J., Ola, M., Silva, R. M., Fonseca, E., Gomes, N. C., Martins-Cruz, C., ... & Miranda, I. M. (2017). Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clinical Microbiology and Infection, 23(8), 575-e1.

Bresciani, F. R., Santi, L., Beys‐da‐Silva, W. O., Berger, M., Barcellos, V. D. A., Schripsema, J., ... & Vainstein, M. H. (2020). Antifungal activity of Allamanda polyantha seed extract and its iridoids promote morphological alterations in Cryptococcus spp. Archiv der Pharmazie, 353(10), 2000133.

Brilhante, R. S. N., da Rocha, M. G., de Oliveira, J. S., Pereira-Neto, W. A., de Melo Guedes, G. M., de Aguiar Cordeiro, R., ... & Castelo, D. D. S. C. M. (2020). Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microbial pathogenesis, 143, 104123.

Brilhante, R. S. N., Gotay, W. J. P., Pereira, V. S., de Oliveira, J. S., Pereira-Neto, W. A., Castelo-Branco, D. D. S. C. M., ... & Rocha, M. F. G. (2020). Antifungal activity of promethazine and chlorpromazine against planktonic cells and biofilms of Cryptococcus neoformans/Cryptococcus gattii complex species. Medical Mycology.

Brito, P. K. M. O. A atividade imunomoduladora de ArtinM sobre o curso da infecção por Cryptococcus gattii (Doctoral dissertation, Universidade de São Paulo).

Brizendine, K. D., & Pappas, P. G. (2010). Cryptococcal meningitis: current approaches to management in patients with and without AIDS. Current infectious disease reports, 12(4), 299-305.

Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E., & Sahl, H. G. (1998). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrobial agents and chemotherapy, 42(1), 154-160.

Carneiro, H. C. S., Bastos, R. W., Ribeiro, N. Q., Gouveia-Eufrasio, L., Costa, M. C., Magalhães, T. F. F., ... & Santos, D. A. (2020). Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. Science of The Total Environment, 740, 140135.

Carrasco, H., Raimondi, M., Svetaz, L., Liberto, M. D., Rodriguez, M. V., Espinoza, L., ... & Zacchino, S. (2012). Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules, 17(1), 1002-1024.

Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60.

Casadevall, A., Coelho, C., Cordero, R. J., Dragotakes, Q., Jung, E., Vij, R., & Wear, M. P. (2019). The capsule of Cryptococcus neoformans. Virulence, 10(1), 822-831.

Cavaleiro, C., Salgueiro, L., Gonçalves, M. J., Hrimpeng, K., Pinto, J., & Pinto, E. (2015). Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. Journal of natural medicines, 69(2), 241-248.

Chakraborty, S., Afaq, N., Singh, N., & Majumdar, S. (2018). Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. Journal of integrative medicine, 16(5), 350-357.

Chandra J., Ghannoum MA (2017) Flucytosine Treatment and Resistance Mechanisms. In: Mayers D., Sobel J., Ouellette M., Kaye K., Marchaim D. (eds) Antimicrobial Drug Resistance. Springer, Cham.https://doi.org/10.1007/978-3-319-46718-4_28

Chang, M., Sionov, E., Lamichhane, A. K., Kwon-Chung, K. J., & Chang, Y. C. (2018). Roles of three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment. Antimicrobial agents and chemotherapy, 62(4).

Chaube, S., & Murphy, M. L. (1969). The teratogenic effects of 5-fluorocytosine in the rat. Cancer research, 29(3), 554-557.

Chen, S. C. A., Slavin, M. A., & Sorrell, T. C. (2011). Echinocandin antifungal drugs in fungal infections. Drugs, 71(1), 11-41.

Chen, Y., Zeng, H., Tian, J., Ban, X., Ma, B., & Wang, Y. (2013). Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. Journal of medical microbiology, 62(8), 1175-1183.

Cho, J. H., Sung, B. H., & Kim, S. C. (2009). Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(8), 1564-1569.

Chowdhary, A., Prakash, A., Sharma, C., Kordalewska, M., Kumar, A., Sarma, S., ... & Yadav, P. (2018). A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. Journal of Antimicrobial Chemotherapy, 73(4), 891-899.

Cioch, M., Satora, P. A. W. E. Ł., Skotniczny, M., Semik-Szczurak, D., & Tarko, T. (2017). Characterisation of antimicrobial properties of extracts of selected medicinal plants. Polish journal of microbiology, 66(4), 463-472.

Corrêa, J. C. R., & Salgado, H. R. N. (2011). Review of fluconazole properties and analytical methods for its determination. Critical reviews in analytical chemistry, 41(2), 124-132.

Corrêa, J. C. R., & Salgado, H. R. N. (2011). Review of fluconazole properties and analytical methods for its determination. Critical reviews in analytical chemistry, 41(2), 124-132.

Costa, C.; et al (2015). New mechanisms of flucytosine resistance in C. glabrata unveiled by a chemogenomics analysis in S. cerevisiae. PloS one, 10.8: e0135110.

De Souza, A. C. M., Kato, L., Da Silva, C. C., Cidade, A. F., De Oliveira, C. M. A., & Silva, M. D. R. R. (2010). Antimicrobial activity of Hymenaea martiana towards dermatophytes and Cryptococcus neoformans. Mycoses, 53(6), 500-503.

Denning, D. W. (2003). Echinocandin antifungal drugs. The Lancet, 362(9390), 1142-1151.

Dhamgaye, S., L Murray, G., & Peleg, A. Y. (2015). The influence of bacterial interaction on the virulence of Cryptococcus neoformans.

Do, E., Park, S., Li, M. H., Wang, J. M., Ding, C., Kronstad, J. W., & Jung, W. H. (2018). The mitochondrial ABC transporter Atm1 plays a role in iron metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Medical mycology, 56(4), 458-468.

Dong, Z. M., & Murphy, J. W. (1993). Mobility of human neutrophils in response to Cryptococcus neoformans cells, culture filtrate antigen, and individual components of the antigen. Infection and immunity, 61(12), 5067-5077.

Estrela, T. S. (2018). Resistência antimicrobiana: enfoque multilateral e resposta brasileira. Brasil, Ministério da Saúde, Assessoria de Assuntos Internacionais de Saúde. Saúde e Política Externa: os, 20, 1998-2018.

Fernandes, F. F., Dias, A. L. T., Ramos, C. L., Ikegaki, M., Siqueira, A. M. D., & Franco, M. C. (2007). The" in vitro" antifungal activity evaluation of propolis G12 ethanol extract on Cryptococcus neoformans. Revista do Instituto de Medicina Tropical de São Paulo, 49(2), 93-95.

Flowers, S. A., Barker, K. S., Berkow, E. L., Toner, G., Chadwick, S. G., Gygax, S. E., ... & Rogers, P. D. (2012). Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryotic cell, 11(10), 1289-1299.

Folly, M. L., Ferreira, G. F., Salvador, M. R., Sathler, A. A., da Silva, G. F., Santos, J. C. B., ... & Lang, K. L. (2020). Evaluation of in vitro Antifungal Activity of Xylosma prockia (Turcz.) Turcz.(Salicaceae) Leaves Against Cryptococcus spp. Frontiers in microbiology, 10, 3114.

Fortwendel, J. R., Juvvadi, P. R., Pinchai, N., Perfect, B. Z., Alspaugh, J. A., Perfect, J. R., & Steinbach, W. J. (2009). Differential effects of inhibiting chitin and 1, 3-β-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. Antimicrobial agents and chemotherapy, 53(2), 476-482.

Freitas, A. F. S., Costa, W. K., Machado, J. C. B., Ferreira, M. R. A., Paiva, P. M. G., Medeiros, P. L., ... & Napoleão, T. H. (2020). Toxicity assessment and antinociceptive activity of an ethanolic extract from Croton blanchetianus (Euphorbiaceae) leaves. South African Journal of Botany, 133, 30-39.

Fukuyama, N., Ino, C., Suzuki, Y., Kobayashi, N., Hamamoto, H., Sekimizu, K., & Orihara, Y. (2011). Antimicrobial sesquiterpenoids from Laurus nobilis L. Natural Product Research, 25(14), 1295-1303. DOI: 10.1080/14786419.2010.502532

Fukuyama, N., Shibuya, M., & Orihara, Y. (2012). Antimicrobial polyacetylenes from Panax ginseng hairy root culture. Chemical and Pharmaceutical Bulletin, 60(3), 377-380. DOI: 10.1248/cpb.60.377

Gil, A. C., & Pessoni, A. (2020). Estratégias para o alcance de objetivos afetivos no ensino remoto. Revista Docência do Ensino Superior, 10, 1-18.

Gullo, F. P., Sardi, J. C., Santos, V. A., Sangalli-Leite, F., Pitangui, N. S., Rossi, S. A., Furlan, M. (2012). Antifungal activity of maytenin and pristimerin. Evidence-Based Complementary and Alternative Medicine, 2012. DOI: 10.1155/2012/340787

Hagen, F., Lumbsch, H. T., Arsenijevic, V. A., Badali, H., Bertout, S., Billmyre, R. B., & Chaturvedi, S. (2017). Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the Cryptococcus genus. Msphere, 2(4).

Healey, K. R., Kordalewska, M., Ortigosa, C. J., Singh, A., Berrío, I., Chowdhary, A., & Perlin, D. S. (2018). Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrobial agents and chemotherapy, 62(10).

Hendrickson, J. A., Hu, C., Aitken, S. L., & Beyda, N. (2019). Antifungal resistance: a concerning trend for the present and future. Current Infectious Disease Reports, 21(12), 47.

Hossain, M. A., Biva, I. J., Kidd, S. E., Whittle, J. D., Griesser, H. J., & Coad, B. R. (2019). Antifungal Activity in Compounds from the Australian Desert Plant Eremophila alternifolia with Potency Against Cryptococcus spp. Antibiotics, 8(2), 34.

Ikeda, R., Sugita, T., Jacobson, E. S., & Shinoda, T. (2003). Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiology and immunology, 47(4), 271-277.

Ishida, K., Rozental, S., de Mello, J. C. P., & Nakamura, C. V. (2009). Activity of tannins from Stryphnodendron adstringens on Cryptococcus neoformans: effects on growth, capsule size and pigmentation. Annals of Clinical Microbiology and Antimicrobials, 8(1), 1-10.

Jandú, J. J., Costa, M. C., Santos, J. R., Andrade, F. M., Magalhães, T. F., Silva, M. V., Santos, D. A. (2017). Treatment with pCramoll alone and in combination with fluconazole provides therapeutic benefits in C. gattii infected mice. Frontiers in cellular and infection microbiology, 7, 211. DOI: 10.3389/fcimb.2017.00211

Jung, K.-W.; et al (2015). Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nature communications, 6.1: 1-14. DOI: 10.1038/ncomms7757

Kamatou GP, Vermaak I, Viljoen AM (2012) Eugenol—from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17: 6953–6981. pmid:22728369

Kano, R., Okubo, M., Hasegawa, A., & Kamata, H. (2017). Multi-azole-resistant strains of Cryptococcus neoformans var. grubii isolated from a FLZ-resistant strain by culturing in medium containing voriconazole. Medical Mycology, 55(8), 877-882.

Kato, H., Hagihara, M., Yamagishi, Y., Shibata, Y., Kato, Y., Furui, T., ... & Mikamo, H. (2018). The evaluation of frequency of nephrotoxicity caused by liposomal amphotericin B. Journal of infection and chemotherapy, 24(9), 725-728.

Khan, M. S. A., Ahmad, I., & Cameotra, S. S. (2013). Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. Amb Express, 3(1), 1-16.

Kołaczkowska, A., & Kołaczkowski, M. (2016). Drug resistance mechanisms and their regulation in non-albicans Candida species. Journal of Antimicrobial Chemotherapy, 71(6), 1438-1450.

Kristanc, L., Božič, B., Jokhadar, Š. Z., Dolenc, MS, & Gomišček, G. (2019). The pore-forming action of polyenes: From model membranes to living organisms. Biochimica et biophysica acta.

Biomembranes, 1861 (2), 418–430.https://doi.org/10.1016/j.bbamem.2018.11.006

Kumamoto, T., Senuma, M., Todoroki, M., Kumagai, F., Imai, H., Suzuki, R., ... & Kuwagata, M. (2020).

-Fluorocytosine induces fetal skeletal malformations in rats by altering expression of Homeobox genes. Fundamental Toxicological Sciences, 7(2), 97-103.

Kumari, P., Mishra, R., Arora, N., Chatrath, A., Gangwar, R., Roy, P., & Prasad, R. (2017). Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Frontiers in microbiology, 8, 2161.

Kwon-Chung, K. J., Fraser, J. A., Doering, T. L., Wang, Z. A., Janbon, G., Idnurm, A., & Bahn, Y. S. (2014). Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harbor perspectives in medicine, 4(7), a019760.

Larsen, R. A., Bauer, M., Thomas, A. M., & Graybill, J. R. (2004). Amphotericin B and fluconazole, a potent combination therapy for cryptococcal meningitis. Antimicrobial agents and chemotherapy, 48(3), 985-991.

LEMOS, Janine de Aquino et al. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Memórias do Instituto Oswaldo Cruz, v. 100, n. 1, p. 55-58, 2005.

Liaw, S. J., Wu, H. C., & Hsueh, P. R. (2010). Microbiological characteristics of clinical isolates of Cryptococcus neoformans in Taiwan: serotypes, mating types, molecular types, virulence factors, and antifungal susceptibility. Clinical Microbiology and Infection, 16(6), 696-703.

Lima, C. S., Polaquini, C. R., dos Santos, M. B., Gullo, F. P., Leite, F. S., Scorzoni, L., Regasini, L. O. (2016). Anti-Candida and anti-Cryptococcus evaluation of 15 non-alkaloidal compounds from Pterogyne nitens. Asian Pacific Journal of Tropical Biomedicine, 6(10), 841-845. DOI: 10.1016/j.apjtb.2016.08.003

Liu, M., Chen, M., & Yang, Z. (2017). Design of amphotericin B oral formulation for antifungal therapy. Drug delivery, 24 (1), 1–9.https://doi.org/10.1080/10717544.2016.1225852

Lockhart, S. R., Etienne, K. A., Vallabhaneni, S., Farooqi, J., Chowdhary, A., Govender, N. P., ... & Berkow, E. L. (2017). Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clinical Infectious Diseases, 64(2), 134-140.

Luqman, S., Dwivedi, G. R., Darokar, M. P., Kalra, A., & Khanuja, S. P. S. (2008). Antimicrobial activity of Eucalyptus citriodora essential oil. International journal of essential oil therapeutics, 2(2), 69-75.

Marongiu, B., Piras, A., Porcedda, S., Falconieri, D., Maxia, A., Frau, M. A., Salgueiro, L. (2013). Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Natural product research, 27(17), 1521-1527. DOI: 10.1080/14786419.2012.725402

Martho, K. F. C., de Melo, A. T., Takahashi, J. P. F., Guerra, J. M., Santos, D. C. D. S., Purisco, S. U., ... & Pascon, R. C. (2016). Amino acid permeases and virulence in Cryptococcus neoformans. PloS one, 11(10), e0163919.

Martinez, L. R., & Casadevall, A. (2006). Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrobial agents and chemotherapy, 50(3), 1021-1033.

Martinez, L. R., & Casadevall, A. (2015). Biofilm formation by Cryptococcus neoformans. Microbial Biofilms, 135-147.

Masoumian, M., & Zandi, M. (2017). Antimicrobial activity of some medicinal plant extracts against multidrug resistant bacteria. Zahedan Journal of Research in Medical Sciences, 19(11).

Molloy, S. F., Kanyama, C., Heyderman, R. S., Loyse, A., Kouanfack, C., Chanda, D., ... & Harrison, T. S. (2018). Antifungal combinations for treatment of cryptococcal meningitis in Africa. New England Journal of Medicine, 378(11), 1004-1017.

Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361-366.

Nóbrega, R. D. O., Teixeira, A. P. D. C., Oliveira, W. A. D., Lima, E. D. O., & Lima, I. O. (2016). Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans. Pharmaceutical biology, 54(11), 2591-2596.

Nosanchuk, J.D., and Casadevall, A. (2006) Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents chemother 50: 3519– 3528.

Ohmori, K. (1972). Teratogenic effects of 5‐fluoro‐2′‐deoxYuridine in pregnant mice. Teratology, 5(1), 71-80.

Oliveira, L. B. S., Batista, A. H. M., Fernandes, F. C., Sales, G. W. P., & Nogueira, N. A. P. (2016). Atividade antifúngica e possível mecanismo de ação do óleo essencial de folhas de Ocimum gratissimum (Linn.) sobre espécies de Candida. Revista Brasileira de Plantas Medicinais, 18(2), 511-523.

Parekh, J., & Chanda, S. (2008). In vitro antifungal activity of methanol extracts of some Indian medicinal plants against pathogenic yeast and moulds. African journal of Biotechnology, 7(23).

Park, C. J., Park, C. B., Hong, S. S., Lee, H. S., Lee, S. Y., & Kim, S. C. (2000). Characterization and cDNA cloning of two glycine-and histidine-rich antimicrobial peptides from the roots of shepherd's purse, Capsella bursa-pastoris. Plant Molecular Biology, 44(2), 187-197.

Park, J. S.; Yu, K. A.; Kang, T. H.; Kim, S.; Suh, Y. G. Discovery of novel indazole-linked triazoles as antifungal agents. Bioorg. Med. Chem. Lett. 2007a, 17, 3486–3490.

Parviz, P., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2020). Antifungal activity of eugenol on Cryptococcus neoformans biological activity and Cxt1p gene expression. Current Medical Mycology, 6(1), 9.

Parviz, P., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2020). Antifungal activity of eugenol on Cryptococcus neoformans biological activity and Cxt1p gene expression. Current Medical Mycology, 6(1), 9.

Pattoo, M., Belewa, V., & Somai, B. M. (2019). Phytochemical Constituents of Tulbaghia violacea Harv Extract and its Antifungal Potential Against Cryptococcus neoformans and Cryptococcus gattii. The Natural Products Journal, 9(4), 330-340.

Perfect, JR, & Bicanic, T. (2015). Cryptococcosis diagnosis and treatment: What do we know now. Fungal genetics and biology: FG & B, 78, 49–54.https://doi.org/10.1016/j.fgb.2014.10.003

Perlin, D. S. (2015). Mechanisms of echinocandin antifungal drug resistance. Annals of the new York Academy of Sciences, 1354(1), 1.

Personett, H. A., Kayhart, B. M., Barreto, E. F., Tosh, P., Dierkhising, R., Mara, K., & Leung, N. (2019). Renal recovery following liposomal amphotericin B-Induced nephrotoxicity. International journal of nephrology, 2019.

Pinheiro, L. S., de Oliveira Filho, A. A., & Guerra, F. Q. S. (2017). Antifungal activity of the essential oil isolated from Laurus nobilis L. against Cryptococcus neoformans strains. Journal of Applied Pharmaceutical Science, 7(05), 115-118. DOI: 10.7324/JAPS.2017.70520

Pinto, E., Gonçalves, M. J., Cavaleiro, C., & Salgueiro, L. (2017). Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and dermatophyte species. Molecules, 22(10), 1595.

Pinto, E., Gonçalves, M. J., Hrimpeng, K., Pinto, J., Vaz, S., Vale-Silva, L. A., Salgueiro, L. (2013). Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products, 51, 93-99. DOI: 10.1016/j.indcrop.2013.08.033

Piras, A., Porcedda, S., Falconieri, D., Maxia, A., Gonçalves, M., Cavaleiro, C., & Salgueiro, L. (2019). Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Natural product research, 1-7.

Posteraro, B., Sanguinetti, M., Sanglard, D., La Sorda, M., Boccia, S., Romano, L., ... & Fadda, G. (2003). Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter‐encoding gene, CnAFR1, involved in the resistance to fluconazole. Molecular microbiology, 47(2), 357-371.

Pramod, K., Ansari, S. H., & Ali, J. (2010). Eugenol: a natural compound with versatile pharmacological actions. Natural product communications, 5(12), 1934578X1000501236.

Prasad, R., & Rawal, M. K. (2014). Efflux pump proteins in antifungal resistance. Frontiers in pharmacology, 5, 202.

Procópio, T. F., de Siqueira Patriota, L. L., de Moura, M. C., da Silva, P. M., de Oliveira, A. P. S., do Nascimento Carvalho, L. V., ... & Napoleão, T. H. (2017). CasuL: a new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect. International journal of biological macromolecules, 98, 419-429.

Ranganathan, S., & Balajee, S. A. M. (2000). Anti‐Cryptococcus activity of combination of extracts of Cassia alata and Ocimum sanctum. Mycoses, 43(7‐8), 299-301.

Rask-Andersen, M., Masuram, S., & Schiöth, H. B. (2014). The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annual review of pharmacology and toxicology, 54, 9-26.

REESE, Amy J. et al. Loss of cell wall alpha (1‐3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Molecular microbiology, v. 63, n. 5, p. 1385-1398, 2007.

Ribeiro, NQ, Santos, A., Emídio, E., Costa, MC, Freitas, G., Carmo, P., Silva, MF, de Brito, CB, de Souza, DG, Paixão, TA, & Santos, DA (2019). Pioglitazone as an adjuvant of amphotericin B for the treatment of cryptococcosis. International journal of antimicrobial agents, 54 (3), 301–308.https://doi.org/10.1016/j.ijantimicag.2019.06.020

Robbins, N., Caplan, T., & Cowen, L. E. (2017). Molecular evolution of antifungal drug resistance. Annual review of microbiology, 71, 753-775.

Rodríguez, T. J. (1997). The resistance of opportunistic fungi to antifungals. Revista clinica espanola, 197, 67.

Sabo, V. A., Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial crops and products, 132, 413-429. DOI: 10.1016/j.indcrop.2019.02.051

Samie, S., Trollope, K. M., Joubert, L. M., Makunga, N. P., & Volschenk, H. (2019). The antifungal and Cryptococcus neoformans virulence attenuating activity of Pelargonium sidoides extracts. Journal of ethnopharmacology, 235, 122-132.

Sangalli-Leite, F., Scorzoni, L., Mesa-Arango, A. C., Casas, C., Herrero, E., Gianinni, M. J. S. M., ... & Zaragoza, O. (2011). Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes and infection, 13(5), 457-467.

Sanglard, D. (2016). Emerging threats in antifungal-resistant fungal pathogens. Frontiers in medicine, 3, 11.

Sanglard, D., Coste, A., & Ferrari, S. (2009). Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS yeast research, 9(7), 1029-1050.

Sanguinetti, M., Posteraro, B., La Sorda, M., Torelli, R., Fiori, B., Santangelo, R., ... & Fadda, G. (2006). Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infection and immunity, 74(2), 1352-1359.

Scalas, D., Mandras, N., Roana, J., Tardugno, R., Cuffini, A. M., Ghisetti, V., ... & Tullio, V. (2018). Use of Pinus sylvestris L.(Pinaceae), Origanum vulgare L.(Lamiaceae), and Thymus vulgaris L.(Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC complementary and alternative medicine, 18(1), 1-13.

Scemla, A., Gerber, S., Duquesne, A., Parize, P., Martinez, F., Anglicheau, D., ... & Lortholary, O. (2015). Dramatic improvement of severe cryptococcosis‐induced immune reconstitution syndrome with adalimumab in a renal transplant recipient. American Journal of Transplantation, 15(2), 560-564.

Schultzhaus, Z., Chen, A., Kim, S., Shuryak, I., Chang, M., & Wang, Z. (2019). Transcriptomic analysis reveals the relationship of melanization to growth and resistance to gamma radiation in Cryptococcus neoformans. Environmental microbiology, 21(8), 2613-2628.

Selmecki, A., Forche, A., & Berman, J. (2006). Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science, 313(5785), 367-370.

Shai, Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462(1-2), 55-70.

Silva, N. C. C., & Fernandes Júnior, A. J. J. O. V. A. (2010). Biological properties of medicinal plants: a review of their antimicrobial activity. Journal of venomous Animals and Toxins including tropical diseases, 16(3), 402-413.

Silva, P. M., de Moura, M. C., Gomes, F. S., da Silva Trentin, D., de Oliveira, A. P. S., de Mello, G. S. V., ... & Napoleão, T. H. (2018). PgTeL, the lectin found in Punica granatum juice, is an antifungal agent against Candida albicans and Candida krusei. International journal of biological macromolecules, 108, 391-400.

Silva, T. C., de Ávila, R. I., Zara, A. L. S. A., Santos, A. S., Ataídes, F., Freitas, V. A. Q., ... & Silva, M. D. R. R. (2020). Punicalagin triggers ergosterol biosynthesis disruption and cell cycle arrest in Cryptococcus gattii and Candida albicans. Brazilian Journal of Microbiology, 51(4), 1719-1727.

Sionov, E., Chang, Y. C., Garraffo, H. M., & Kwon-Chung, K. J. (2009). Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrobial agents and chemotherapy, 53(7), 2804-2815.

Sionov, E., Chang, Y. C., Garraffo, H. M., Dolan, M. A., Ghannoum, M. A., & Kwon-Chung, K. J. (2012). Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrobial agents and chemotherapy, 56(3), 1162-1169.

Sitapati, A. M., Kao, C. L., Cachay, E. R., Masoumi, H., Wallis, R. S., Mathews, W. C., & Owen Clinic Study Group. (2010). Treatment of HIV-related inflammatory cerebral cryptococcoma with adalimumab. Clinical Infectious Diseases, 50(2), e7-e10.

Sloan, D. J., & Parris, V. (2014). Cryptococcal meningitis: epidemiology and therapeutic options. Clinical epidemiology, 6, 169.

Smith, D. F., & Casadevall, A. (2019). The role of melanin in fungal pathogenesis for animal hosts. Fungal Physiology and Immunopathogenesis, 1-30.

Song, M.-H.; et al (2012). A flucytosine-responsive Mbp1/Swi4-like protein, Mbs1, plays pleiotropic roles in antifungal drug resistance, stress response, and virulence of Cryptococcus neoformans. Eukaryotic cell, 11.1: 53-67. doi: 10.1128/EC.05236-117

Spadari, CC, Wirth, F., Lopes, LB, & Ishida, K. (2020). New Approaches for Cryptococcosis Treatment. Microorganisms, 8 (4), 613.https://doi.org/10.3390/microorganisms8040613

Springer, D. J., Mohan, R., & Heitman, J. (2017). Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus. PloS one, 12(2), e0171695.

Srikanta, D., Santiago-Tirado, F. H., & Doering, T. L. (2014). Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast (Chichester, England), 31(2), 47–60.

Stone, N. R., Rhodes, J., Fisher, M. C., Mfinanga, S., Kivuyo, S., Rugemalila, J., ... & Harrison, T. S. (2019). Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. The Journal of clinical investigation, 129(3), 999-1014.

Suliman, S., Van Vuuren, S. F., Viljoen, A. M. (2010). Validating the in vitro antimicrobial activity of Artemisia afra in polyherbal combinations to treat respiratory infections. South African Journal of Botany, 76(4), 655-661. DOI: 10.1016/j.sajb.2010.07.003

Sykes, J. E., Hodge, G., Singapuri, A., Yang, M. L., Gelli, A., & Thompson, G. R. (2017). In vivo development of fluconazole resistance in serial Cryptococcus gattii isolates from a cat. Medical mycology, 55(4), 396-401.

T. A. Mokoka, L. J. McGaw & J. N. Eloff (2010) Antifungal efficacy of ten selected South African plant species against Cryptococcusneoformans, Pharmaceutical Biology, 48:4, 397-404, DOI: 10.3109/13880200903150393

Tamokou, J. D. D., Kuiate, J. R., Tene, M., Nwemeguela, T. J. K., Tane, P. (2011). The antimicrobial activities of extract and compounds isolated from Brillantaisia lamium. Iranian journal of medical sciences, 36(1), 24.

Temfack, E., Boyer-Chammard, T., Lawrence, D., Delliere, S., Loyse, A., Lanternier, F., Alanio, A., & Lortholary, O. (2019). New Insights Into Cryptococcus Spp. Biology and Cryptococcal Meningitis. Current neurology and neuroscience reports, 19(10), 81.

Thirach, S., Tragoolpua, K., Punjaisee, S., Khamwan, C., Jatisatienr, C., & Kunyanone, N. (2003). Antifungal activity of some medicinal plant extracts against Candida albicans and Cryptococcus neoformans. Acta horticulturae, 597, 217-221.

Valente, J., Zuzarte, M., Gonçalves, M. J., Lopes, M. C., Cavaleiro, C., Salgueiro, L., & Cruz, M. T. (2013). Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food and chemical toxicology, 62, 349-354.

Valli, S., & Shankar, S. G. (2013). Terminalia bellerica-a promising challenge to cryptococcosis. International Journal of Pharmaceutical Research and Bio-Science, 2(5), 154-169.

Van Duin, D., Casadevall, A., & Nosanchuk, J. D. (2002). Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrobial agents and chemotherapy, 46(11), 3394-3400.

Vanden Berg, F., Kubiak, R., Benjey, W. G., Majewski, M. S., Yates, S. R., Reeves, G. L., ... & Van der Linden, A. M. A. (1999). Emission of pesticides into the air. In Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment (pp. 195-218). Springer, Dordrecht.

Villis, P., de Macedo, A. T., Furtado, H. L., Fontenelle, P. H., Gonçalves, I. S., Mendes, T. L., ... & Santos, J. R. (2021). A Study of the Disruptive Effect of the Acetate Fraction of Punica granatum Extract on Cryptococcus Biofilms. Frontiers in Microbiology, 11, 3533.

Wang, S., Wang, Z., Zhang, Y., Wang, J., & Guo, R. (2013). Pesticide residues in market foods in Shaanxi Province of China in 2010. Food Chemistry, 138(2-3), 2016-2025.

Watkins, R. A., King, J. S., & Johnston, S. A. (2017). Nutritional requirements and their importance for virulence of pathogenic Cryptococcus species. Microorganisms, 5(4), 65.

White, N. J. (1998). Preventing antimalarial drug resistance through combinations. Drug resistance updates, 1(1), 3-9.

Willger, S. D., Puttikamonkul, S., Kim, K. H., Burritt, J. B., Grahl, N., Metzler, L. J., ... & Cramer Jr, R. A. (2008). A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog, 4(11), e1000200.

Wimley, W. C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS chemical biology, 5(10), 905-917.

World Health Organization. (2018). Guidelines for the diagnosis, prevention, and management of cryptococcal disease in HIV-infected adults, adolescents and children, March 2018: supplement to the 2016 consolidated guidelines of the use of antiretroviral drugs for treating and preventing HIV infection. World Health Organization.https://apps.who.int/iris/handle/10665/260399.

Yang, M. L., Uhrig, J., Vu, K., Singapuri, A., Dennis, M., Gelli, A., & Thompson, G. R. (2016). Fluconazole susceptibility in Cryptococcus gattii is dependent on the ABC transporter Pdr11. Antimicrobial agents and chemotherapy, 60(3), 1202-1207.

York, T., Van Vuuren, S. F., De Wet, H. (2012). An antimicrobial evaluation of plants used for the treatment of respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. Journal of Ethnopharmacology, 144(1), 118-127.

Yu, C. H., Chen, Y., Desjardins, C. A., Tenor, J. L., Toffaletti, D. L., Giamberardino, C., ... & Cuomo, C. A. (2020). Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microbial genomics, 6(1).

Zaragoza, O. (2019). Basic principles of the virulence of Cryptococcus. Virulence, 10(1), 490-501.

Zhang, L.; et al (2002). Expression profiling of the response of Saccharomyces cerevisiae to 5-fluorocytosine using a DNA microarray. International journal of antimicrobial agents, 20.6: 444-450. DOI: 10.1016/s0924-8579(02)00201-7

Zhao, Y., Lin, J., Fan, Y., & Lin, X. (2019). Life Cycle of Cryptococcus neoformans. Annual review of microbiology, 73, 17–42

Downloads

Published

24/02/2021

How to Cite

SILVA, S. P. da .; COSTA, C. B. L. da .; SILVA, J. D. F. da .; ALVES, R. R. de V. .; SILVA, G. A. de S. .; FREITAS, A. F. S. de .; GUEDES, C. C. da S. .; MARINHO, A. de O. .; PAIVA, P. M. G. .; NAPOLEÃO, T. H. . Resistance mechanisms of Cryptococcus spp. and plant compounds as tools to combat them. Research, Society and Development, [S. l.], v. 10, n. 2, p. e57810212819, 2021. DOI: 10.33448/rsd-v10i2.12819. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12819. Acesso em: 24 nov. 2024.

Issue

Section

Review Article