Queueing Theory and Stochastic Petri Net: A tutorial





Petri nets; Queueing analysis; Systems modeling.


Queuing theory studies systems that require customers or objects to wait. On the other hand, Petri nets are a mathematical formalism used to model, analyze and optimize complex systems. Although queuing theory has been widely used in the literature, it cannot be used to model complex behavior like dependencies between system components or failure and repair behavior. Therefore, this tutorial is meant to introduce the reader to the vocabulary and constructions of Petri net models and illustrate the equivalence of these models to queuing systems by means of a set of examples. The statistical results obtained through simulation revealed that Petri net models can represent queuing systems. In addition, we hope that this tutorial will complement the limitations of queuing theory and help researchers or professionals, both from academia and industry, to model complex systems based on the examples presented in this work.


Arteiro, R. & Souza, F. & Rosa, N. & Maciel, P. (2007). Utilizando redes de Petri para modelagem de desempenho de middleware orientado a mensagem. Anais do XXVII Congresso da SBC - SBC, Sociedade Brasileira de Computação, 595-614.

Bassanezi, R. C. (2002). Ensino-aprendizagem com modelagem matemática: uma nova estratégia. Contexto.

Balbo, G. (2001). Introduction to Stochastic Petri Nets. Lectures on Formal Methods and Performance Analysis, 2090 of LNCS, 88-155.

Blätke, M. A. & Heiner, M. & M, W. (2011). Tutorial - Petri Nets in Systems Biology. Technical Report. 10.13140/2.1.3796.6402.

G. Bolch, S. Greiner, H. de M., & Trivedi. K. S. (2006). Queueing Networks and Markov Chains. (2a ed.), Wiley-Interscience.

Chung, C. (2019). Simulation Modeling Handbook: A Practical Approach. CRC Press.

Dubois G. (2018). Modeling and Simulation. CRC Press-Taylor & Francis.

Doo-Kwon B. (2005). Systems modeling and simulation: theory and applications - third Asian Simulation Conference, AsiaSim 2004, Jeju Island, Korea, October, 2004. Springer.

Fogliatti, M. C.; Mattos, N. M. C. (2007). Teoria de Filas. Editora Interciência. .

Havelange, S.& Rêgo, R. (2015). O Concreto e o Abstrato no Ensino de Matemática. 10.13140/RG.2.1.1385.7760.

Hermann, W., Juvanelli, C., & Coqueiro, V. dos S. (2020). Overview of publications on Mathematical Modeling in four journals of the teaching area. Research, Society and Development, 9(8), e73985139. https://doi.org/10.33448/rsd-v9i8.5139.

Hillier, F. Lieberman, G. (2013). Introdução à pesquisa operacional, (9a ed.), AMGH.

Kleijnen, Jack. (2007). Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, 173-223. 10.1002/9780470172445.

Kounev, S., & Buchmann, A. (2003). Performance modelling of distributed e-business applications using Queuing Petri Nets, 143- 155. 10.1109/ISPASS.2003.1190241.

Maciel, P. et al. (2017). Mercury: Performance and Dependability Evaluation of Systems with Exponential, Expolynomial and General Distributions. In: The 22nd IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2017). January 22-25. Christchurch, New Zealand.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580.

Silva, B. et al. (2015). Mercury: An Integrated Environment for Performance and Dependability Evaluation of General Systems. In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN-2015).

Sztrik, J. (2012). Basic Queuing Theory, University of Debrecen, Faculty of Informatics. Hungary.

Taha, H. A. (2006). Operations research: an introduction, (8th ed.), Macmillan Publishing Co., Inc. Indianapolis, IN, USA.

Trivedi, K. S. (2008). Probability & Statistics with Reliability, Queuing and Computer Science Applications. John Wiley & Sons.

Viali, L. (2006). Contribuições para o ensino da distribuição normal ou curva de Gauss em cursos de Graduação. In: III Seminário Internacional de Pesquisa em Educação Matemática. São Paulo, SP, Brazil.

Zimmermann, A. (2014). Reliability Modelling and Evaluation of Dynamic Systems with Stochastic Petri Nets (Tutorial). VALUETOOLS 2013 - 7th International Conference on Performance Evaluation Methodologies and Tools. 10.4108/icst.valuetools.2013.254370.

Zurawski, R. & Zhou, M. (1995). Petri net and industrial application: A tutorial. IEEE Transactions on Industrial Electronics. 41. 567 - 583. 10.1109/41.334574.



How to Cite

LIMA, J. W. S. de .; CALLOU, G.; ANDRADE, E. Queueing Theory and Stochastic Petri Net: A tutorial. Research, Society and Development, [S. l.], v. 10, n. 3, p. e2810312826, 2021. DOI: 10.33448/rsd-v10i3.12826. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12826. Acesso em: 17 apr. 2021.



Exact and Earth Sciences