Analysis of the efficiency of natural lignocellulosic sorbents in the remediation of oil spilled in marine waters using sisal fiber

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.12852

Keywords:

Adsorption; Sisal fiber; Oil spill.

Abstract

Oil production, applied in various sectors of the economy, can trigger environmental impacts from marine spills and spills in exploration, transportation and storage, capable of destroying biomes. To remedy impacted areas, containment and cleaning barriers in a marine environment are used. Lignocellulosic fibers have a high capacity to absorb oil, and can easily serve as barriers in a spill process, preventing the oil stain from spreading, in addition to providing remediation of the impacted site. Sisal fiber is a lignocellulosic material and is found on a large scale in nature as a by-product of agricultural production in addition to being materials from renewable sources as well as biodegradable. The present work aims to carry out a study involving tests carried out in the laboratory in order to verify the efficiency of fresh sisal fiber in the sorption of oil in the Campos Basin. The morphological analysis of the fiber, through the Scanning Electron Microscope (SEM), allowed access to enlarged images of the surface area of the fiber, composed of pores responsible for the oil adsorption process. To assess its efficiency, offshore spill tests were simulated, under different periods (5, 20, 40, 60, 90 and 120 minutes), using the reciprocating table (126 rpm), which simulates marine hydrodynamics. The data collected suggested the need for a minimum time of 5 minutes of contact with oil in eventual marine spills. Fiber recycling was analyzed over six subsequent cycles. The adsorptive potential of the last cycle dropped approximately 12% from the first sorption, characterizing good fiber reuse after successive applications.

References

Abdullah, M. A., Rahmah, A. U., & Man, Z. (2010). Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. Journal of Hazardous Materials, 177(1–3), 683–691.

Al Zubaidi, I., Zaffar, U., Mustafa, N., Varughese, V., Rashid, A., Shahid, E. E., Ahmed, R., Alharmoudi, A., & Gomes. (2015). Adsorption Study of Bio-Degradable Natural Sorbents for Remediation of Water from Crude Oil. International Conference on Environmental Science and Technology, 84, 138–142.

Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340–1346. https://doi.org/10.1016/j.marpolbul.2005.04.043

ANP. (2021). Produção de petróleo e gás teve recorde em 2020 e aumentou 52,71% em relação a 2010. https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/noticias-comunicados/producao-de-petroleo-e-gas-teve-recorde-em-2020-e-aumentou-52-71-em-relacao-a-2010

Barbosa, A. D. P. (2011). Características estruturais e propriedades de compósitos poliméricos reforçados com fibras de buriti. Tese (Doutorado em Engenharia e Ciência dos Materiais), Universidade Estadual do Norte Fluminense, Campos dos Goytacazes–RJ.

Barragan, O. L. V. (2012). Caracterização Geoquímica de óleos da América. Dissertação (Mestrado em Geoquímica do Petróleo e Ambiental), Universidade Federal da Bahia, Instituto de Geociência IGEO/ UFBA, Salvador-BA.

Berger, A. H., & Bhown, A. S. (2011). Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia, 4, 562–567.

Cardoso, C. K. M., Cardoso, R. da P. G., & Moreira, Í. T. A. (2018). Avaliação de sorventes naturais para remediação de petróleo derramado em águas marinhas costeiras: o estado da arte e um estudo de caso aplicado. Seminário estudantil de produção acadêmica (SEPA) 16, 178–197.

CETESB. (2021). Limpeza de ambientes costeiros. http://cetesb.sp.gov.br/emergencias-quimicas/tipos-de-acidentes/vazamentos-de-oleo/acoes-de-resposta/limpeza-de-ambientes-costeiros/

Dong, T., Xu, G., & Wang, F. (2015). Oil spill cleanup by structured natural sorbents made from cattail fibers. Industrial Crops & Products, 76, 25–33.

EPA. (2021). Overview of the Spill Prevention, Control, and Countermeasure (SPCC) Regulation. https://www.epa.gov/oil-spills-prevention-and-preparedness-regulations/overview-spill-prevention-control-and

Ferreira, R. T. (2009). Sorção de petróleo por fibras vegetais. Dissertação (Mestrado em Engenharia Mecânica), Universidade Federal do Rio Grande do Norte, Natal-RN.

García-Garrido, V. J., Ramos, A., Mancho, A. M., Coca, J., & Wiggins, S. (2016). A dynamical systems perspective for a real-time response to a marine oil spill. Marine Pollution Bulletin, 112(1–2), 201–210. https://doi.org/10.1016/j.marpolbul.2016.08.018

Grote, M. et al. (2018). The potential for dispersant use as a maritime oil spill response measure in German waters. Marine Pollution Bulletin, 129(2), 623–632.

ITOPF. (2020). Oil Tanker Spill Statistics. http://www.itopf.com/knowledge-resources/data-statistics/statistics/

Li, P., Cai, Q., Lin, W., Chen, B., & Zhang, B. (2016). Offshore oil spill response practices and emerging challenges. Marine Pollution Bulletin, 110(1), 6–27.

Lim, T. T., & Huang, X. (2007). Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. Chemosphere, 66(5), 955–963.

Lopes, C. F., Milanelli, J. C. C., & Poffo, I. R. F. (2007). Ambientes Costeiros contaminados por óleo Procedimentos de limpeza- Manual de orientação. (CETESB (ed.)).

Martin, A. R., Martins, M. A., & Silva, O. R. R. F. (2009). Caracterização Química e Estrutural de Fibra de Sisal da Variedade Agave sisalana. Polímeros: Ciência e Tecnologia, 19, 40–46.

Oliveira, O. M. C. de, Antônio, A. F., Cerqueira, J. R., Soares, S. A. R., Garcia, K. S., Filho, A. P., de L. da S. Rosa, M., Suzart, C. M., de L. Pinheiro, L., & Moreira, Í. T. A. (2020). Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, 160(July), 111597. https://doi.org/10.1016/j.marpolbul.2020.111597

PETROBRÁS. (2018). Pré-Sal novo. https://petrobras.com.br/pt/nossas-atividades/areas-de-atuacao/exploracao-e-producao-de-petroleo-e-gas/pre-sal/#:~:text=Nossa produção diária de petróleo,barris por dia em 2018.

Podgorski, D. C. et al. (2012). Heavy petroleum composition. 5. compositional and structural continuum of petroleum revealed. Acs Publications Journal Stars, 27, 1268–1276.

Queiroz, M. S. M. (2011). Hidrocarbonetos policíclicos aromáticos em sedimentos de fundo do estuário do rio Potengi, região da grande Natal (RN): implicações ambientais. Dissertação (Mestrado em Pesquisa e Desenvolvimento em Ciência e Engenharia de Petróleo), Universidade Federal do Rio Grande do Norte, Natal-RN.

Segundo, P. de O. (2011). Avaliação da Viabilidade do Sisal como Sorvente de Óleo. Monografia (Graduação em Engenharia Química), Universidade Federal do Rio Grande do Norte, Natal-RN.

Sousa, C. S. Jr. (2009). Comportamento reológico de dispersões aquosas em óleo leve pesado, In Anais, 5° Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás (pp. 7), Fortaleza-CE, Universidade Federal do Ceará. Ceará: Edições UFC.

Speight, J. G., & El-Gendy, N. S. (2017). Introduction to petroleum biotechnology: Petroleum Composition and Properties. In Gulf Professional Publishing (pp. 1–39).

Trigo, G. R., Zock, J. P., & Montes, I. I. (2018). Health Effects of Exposure to Oil Spills. Archivos de Bronconeumología, 43, 628–635.

Wang, J., Zheng, Y., & Wang, A. (2012). Effect of kapok fiber treated with various solvents on oil absorbency. Industrial Crops and Products, 40 (1), 178–184.

Wang, J., & Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156.

Wong, C., McGowan, T., Bajwa, S. G., & Bajwa, D. S. (2016). Impact of fiber treatment on the oil absorption characteristics of plant fibers. BioResources, 11(3), 6452–6463.

Published

07/07/2021

How to Cite

CARDOSO, R. da P. G. .; CAVALCANTE, B. M. N. .; BRIOUDE, M. de M. .; MOREIRA, Ícaro T. A. . Analysis of the efficiency of natural lignocellulosic sorbents in the remediation of oil spilled in marine waters using sisal fiber. Research, Society and Development, [S. l.], v. 10, n. 8, p. e4110812852, 2021. DOI: 10.33448/rsd-v10i8.12852. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12852. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings