Adsorption of the basic Malachite Green dye via activated carbon from the açaí seed

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12871

Keywords:

Isotherms; Kinetics; Dyes.

Abstract

Synthetic dyes are widely used in various industrial sectors, generating a potential pollutant to water bodies. Thus, with a great need to carry out an adequate treatment of this type of effluent, this study observed the efficiency in the removal of the malachite green dye using the activated carbon (AC) produced from the açaí stone (Euterpe oleracea), as an adsorbent. commonly generated in the Amazon region. In the production of AC two activating agents were used, Phosphoric Acid (H3PO4), being called CAG-A and sodium hydroxide (NaOH), being called CAG-B. The AC characterization was performed through FTIR, ATG/ATD, BET area, and SEM/EDS analyzes. To determine the adsorption capacity as well as to study and understand the mechanisms and controlling steps of the adsorption process, the experimental data were adjusted to the mathematical models of Langmuir and Freundlich and to the kinetic models of Pseudo-First Order, Pseudo-Second Order and Intraparticle Diffusion. The analysis for the characterization of the AC's indicated the presence of acid functional groups, negatively charging the surface of CAG-A and CAG-B, favoring the adsorption process, since the adsorbate in this study is a cationic dye. The experimental data for both CAG-A and CAG-B best fit the Freundlich isotherm, as well as the kinetic model of Pseudo-Second Order had better fit on both coals. The adsorption of malachite green in CAG-A and CAG-B proved to be efficient for ACs, obtaining values ​​of qmax = 113.9 mg/g and 668.88 mg/g respectively.

References

Ahmad, A. et al. (2015). Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC advances, 5(39), 30801-30818.

Ahmed, M. J., & Dhedan, S. K. (2012). Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid phase equilibria, 317, 9-14a.

Ahmed, M. J., & Theydan, S. K. (2012). Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technology, 229, 237-245b.

Almeida, C. F. D. (2015). Produção de carvão ativado quimicamente a partir da palmácea mauritia flexuosa e o estudo de suas propriedades adsortivas.

Andrade, R. C. D. (2014). Preparação e caracterização de carvão ativado a partir de material alternativo lignocelulósico.

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017.

Azaman, S. H., Afandi, A., Hameed, B. H., & Din, A. M. (2018). Removal of malachite green from aqueous phase using coconut shell activated carbon: Adsorption, desorption, and reusability studies. Journal of Applied Science and Engineering, 21(3), 317-330.

Azevedo, L. E. C. D. (2015). Adsorção de corantes básicos empregados na indústria têxtil por argila: cinética e perfil de equílibrio.

Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal, 286, 476-484.

Benadjemia, M., Millière, L., Reinert, L., Benderdouche, N., & Duclaux, L. (2011). Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Processing Technology, 92(6), 1203-1212.

Bharti, V., Vikrant, K., Goswami, M., Tiwari, H., Sonwani, R. K., Lee, J., & Singh, R. S. (2019). Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental research, 171, 356-364.

Biswas, S., & Mishra, U. (2015). Effective remediation of lead ions from aqueous solution by chemically carbonized rubber wood sawdust: equilibrium, kinetics, and thermodynamic study. Journal of Chemistry, 2015.

Bulut, E., Özacar, M., & Şengil, İ. A. (2008). Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous and mesoporous materials, 115(3), 234-246.

Calvete, T. et al. (2010). Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: kinetic, equilibrium, and thermodynamic studies. Journal of environmental management, 91(8), 1695-1706.

Cao, J. S., Lin, J. X., Fang, F., Zhang, M. T., & Hu, Z. R. (2014). A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresource technology, 163, 199-205.

Clark, H. L. M. (2010). Remoção de fenilalanina por adsorvente produzido a partir de torta prensada de grãos defeituosos de café.

Datta, D., Kerkez Kuyumcu, Ö., Bayazit, Ş. S., & Abdel Salam, M. (2017). Adsorptive removal of malachite green and Rhodamine B dyes on Fe3O4/activated carbon composite. Journal of Dispersion Science and Technology, 38(11), 1556-1562.

de Lima Yamaguchi, K. K., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., & da Veiga-Junior, V. F. (2015). Amazon acai: chemistry and biological activities: a review. Food chemistry, 179, 137-151.

De Marco, C. (2015). Preparação, caracterização e aplicação de um compósito ferromagnético na remoção do corante verde de malaquita em meio aquoso.

de Souza, T. N. V., de Carvalho, S. M. L., Vieira, M. G. A., da Silva, M. G. C., & Brasil, D. D. S. B. (2018). Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. Applied Surface Science, 448, 662-670a.

de Souza, T. N. V., Vieira, M. G. A., da Silva, M. G. C., Brasil, D. D. S. B., & de Carvalho, S. M. L. (2019). H3PO4-activated carbons produced from açai stones and Brazil nut shells: removal of basic blue 26 dye from aqueous solutions by adsorption. Environmental Science and Pollution Research, 26(28), 28533-28547b.

Fan, Z., Qi, D., Xiao, Y., Yan, J., & Wei, T. (2013). One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Materials Letters, 101, 29-32.

Fernandes, M. R., Huang, X., Abbenhuis, H. C., & Hensen, E. J. (2019). Lignin oxidation with an organic peroxide and subsequent aromatic ring opening. International journal of biological macromolecules, 123, 1044-1051.

Fiol, N., & Villaescusa, I. (2009). Determination of sorbent point zero charge: usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79-84.

Galindo, L. S. G. (2012). Remoção de íons de chumbo e cádmio em diferentes sistemas de adsorção/troca iônica em argila bentonítica tipo Fluidgel.

Giannakoudakis, D. A., Hosseini-Bandegharaei, A., Tsafrakidou, P., Triantafyllidis, K. S., Kornaros, M., & Anastopoulos, I. (2018). Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review. Journal of environmental management, 227, 354-364.

Guimarães, I. D. S. (2006). Oxidação de carvões ativados de endocarpo de coco da baía com soluções de HNO3 e uma investigação sobre o método de Boehm. Universidade Federal da Paraíba, Departamento de Química, Jão Pessoa, PB, 81.

El Haddad, M., Slimani, R., Mamouni, R., ElAntri, S., & Lazar, S. (2013). Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic and Applied Sciences, 14(1), 51-59.

Hao, J., Ji, L., Li, C., Hu, C., & Wu, K. (2018). Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 88, 137-145.

Hui, M., Shengyan, P., Yaqi, H., Rongxin, Z., Anatoly, Z., & Wei, C. (2018). A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chemical Engineering Journal, 345, 556-565.

Instituto Brasileiro de Geografia e Estatística. (2020). Açaí. https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2019_v46_br_informativo.pdf

Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and environmental safety, 138, 279-285.

Jain, S. N., Tamboli, S. R., Sutar, D. S., Jadhav, S. R., Marathe, J. V., Shaikh, A. A., & Prajapati, A. A. (2020). Batch and continuous studies for adsorption of anionic dye onto waste tea residue: kinetic, equilibrium, breakthrough and reusability studies. Journal of Cleaner Production, 252, 119778.

Junior, O. P., et al. (2014). Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis, 105, 166-176.

Kaouah, F., Boumaza, S., Berrama, T., Trari, M., & Bendjama, Z. (2013). Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production, 54, 296-306.

Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: a review. Journal of environmental chemical engineering, 6(4), 4676-4697.

Khan, T. A., Dahiya, S., Ali, I.. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Applied Clay Science, 69, 58-66, 2012.

Konicki, W., Cendrowski, K., Bazarko, G., & Mijowska, E. (2015). Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chemical Engineering Research and Design, 94, 242-253.

Köche, J. C. (2011). Fundamentos de metodologia científica. Editora Vozes.

Kumar, N., Mittal, H., Parashar, V., Ray, S. S., & Ngila, J. C. (2016). Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC advances, 6(26), 21929-21939a.

Kumar, N., Reddy, L., Parashar, V., & Ngila, J. C. (2017). Controlled synthesis of microsheets of ZnAl layered double hydroxides hexagonal nanoplates for efficient removal of Cr (VI) ions and anionic dye from water. Journal of environmental chemical engineering, 5(2), 1718-1731b.

Kumar, N., Fosso-Kankeu, E., & Ray, S. S. (2019). Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb (II) from aquatic systems. ACS applied materials & interfaces, 11(21), 19141-19155c.

Kundu, S., & Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chemical Engineering Journal, 122(1-2), 93-106.

Lucena, L. M. D. (2018). Estudo do processo de adsorção com o carvão ativado proveniente do endocarpo de coco (Coccus nucifera L.) para remoção de cor, DQO e toxicidade de efluente têxtil (Master's thesis, Universidade Federal de Pernambuco).

Mangueira, E. S. V. (2014). Produção de carvão ativado a partir de endocarpo de coco da baía (Cocos nucifera) aplicado ao processo de adsorção do herbicida metribuzin.

Marinho, S. B. N., de Oliveira, J. D. M., do Nascimento Gomes, D., Rocha, B. S., Yara, R., de Andrade Lima, C. S., & Machado, D. C. (2019). Caracterização de scaffold poroso obtido pela técnica de freezecasting. Anais do III Simpósio de Inovação em Engenharia Biomédica-SABIO 2019, 43.

Masoumi, S., & Dalai, A. K. (2020). Optimized production and characterization of highly porous activated carbon from algal-derived hydrochar. Journal of Cleaner Production, 263, 121427.

Mittal, H., & Mishra, S. B. (2014). Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydrate polymers, 101, 1255-1264.

Mohammad, M., Maitra, S., & Dutta, B. K. (2018). Comparison of activated carbon and physic seed hull for the removal of malachite green dye from aqueous solution. Water, Air, & Soil Pollution, 229(2), 1-14.

Murthy, T. K., Gowrishankar, B. S., Prabha, M. C., Kruthi, M., & Krishna, R. H. (2019). Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchemical Journal, 146, 192-201.

Muttakin, M., Mitra, S., Thu, K., Ito, K., & Saha, B. B. (2018). Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. International Journal of Heat and Mass Transfer, 122, 795-805.

Nascimento, R. F. D., Lima, A. C. A. D., Vidal, C. B., Melo, D. D. Q., & Raulino, G. S. C. (2014). Adsorção: aspectos teóricos e aplicações ambientais.

Nascimento, B. F. D. (2019). Adsorção de furfural em carvão ativado do endocarpo de açaí (Master's thesis, Universidade Federal de Pernambuco).

Naushad, M., ALOthman, Z. A., & Javadian, H. (2015). Removal of Pb (II) from aqueous solution using ethylene diamine tetra acetic acid-Zr (IV) iodate composite cation exchanger: kinetics, isotherms and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 25, 35-41.

Nazari, M., & Halladj, R. (2014). Adsorptive removal of fluoride ions from aqueous solution by using sonochemically synthesized nanomagnesia/alumina adsorbents: an experimental and modeling study. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2518-2525.

Noorimotlagh, Z., Soltani, R. D. C., Khataee, A. R., Shahriyar, S., & Nourmoradi, H. (2014). Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1783-1791.

Ofomaja, A. E., & Ho, Y. S. (2007). Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials, 139(2), 356-362.

Oliveira, R. F. (2013). Estudo da adsorção de cromo hexavalente em altas concentrações.

Oliveira, L. D., & Tavares, G. D. S. (2016). Programa de desenvolvimento da cadeia produtiva do açaí no Estado do Pará (PRO-AÇAÍ). Belém, Pará, SEDAP.

Pallarés, J., González-Cencerrado, A., & Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, 115, 64-73.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Pereira, R. G., Veloso, C. M., da Silva, N. M., de Sousa, L. F., Bonomo, R. C. F., de Souza, A. O., & Fontan, R. D. C. I. (2014). Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Processing Technology, 126, 476-486.

Porpino, K. K. P. (2009). Biossorção de ferro (II) por casca de caranguejo Ucides Cordatus (Doctoral dissertation, Dissertação (Mestrado em Química)–Universidade Federal da Paraíba, João Pessoa).

Prola, L. D., Machado, F. M., Bergmann, C. P., de Souza, F. E., Gally, C. R., Lima, E. C., & Calvete, T. (2013). Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. Journal of environmental management, 130, 166-175.

Puziy, A. M., Poddubnaya, O. I., Martínez-Alonso, A., Castro-Muñiz, A., Suárez-García, F., & Tascón, J. M. (2007). Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon, 45(10), 1941-1950.

Ray, S. S.; Gusain, R; Kuma, N. (2020) Adsorption equilibrium isotherms, kinetics and thermodynamics. Elsevier.

Regti, A., Laamari, M. R., Stiriba, S. E., & El Haddad, M. (2017). Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal, 130, 129-136.

Reis, D. C. N. S. P. (2013). Importância do estudo da área superficial específica e porosidade do estearato de magnésio para o setor farmacêutico.

Rimoli, M. F. D. S., Nogueira, R. M., Ferrarini, S. R., Castro, P. M. D., & Pires, E. M. (2019). Preparation and characterization of carbon from the fruit of Brazil nut tree activated by physical process. Revista Árvore, 43(2).

Royer, B., Cardoso, N. F., Lima, E. C., Macedo, T. R., & Airoldi, C. (2010). A useful organofunctionalized layered silicate for textile dye removal. Journal of hazardous materials, 181(1-3), 366-374.

Saleh, T. A., Sulaiman, K. O., AL-Hammadi, S. A., Dafalla, H., & Danmaliki, G. I. (2017). Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: with column system evaluation. Journal of Cleaner Production, 154, 401-412a.

Saleh, T. A., Adio, S. O., Asif, M., & Dafalla, H. (2018). Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon. Journal of Cleaner Production, 182, 960-968b.

Salima, A., Benaouda, B., Noureddine, B., & Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water research, 47(10), 3375-3388.

Sato, M. K. (2018). Biocarvão de resíduos de açaí como condicionante de solos.

Santhi, T., Manonmani, S., & Smitha, T. (2010). Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. Journal of hazardous materials, 179(1-3), 178-186.

Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 306, 1116-1137.

Schultz, J. (2012). Obtenção de carvão ativado a partir de resíduos agroindustriais para adsorção de antibiótico–amoxicilina.

Shamsuddin, M. S., Yusoff, N. R. N., & Sulaiman, M. A. (2016). Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry, 19, 558-565.

Slimani, R., Anouzla, A., Abrouki, Y., Ramli, Y., El Antri, S., Mamouni, R., ... & El Haddad, M. (2011). Removal of a cationic dye-Methylene Blue-from aqueous media by the use of animal bone meal as a new low cost adsorbent. J. Mater. Environ. Sci, 2(1), 77-87.

Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25-48.

Tang, Y. B., Liu, Q., & Chen, F. Y. (2012). Preparation and characterization of activated carbon from waste ramulus mori. Chemical Engineering Journal, 203, 19-24.

Vincent, T., Taulemesse, J. M., Dauvergne, A., Chanut, T., Testa, F., & Guibal, E. (2014). Thallium (I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate polymers, 99, 517-526.

Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: current status and challenges. Bioresource technology, 253, 355-367.

Vimonses, V., Lei, S., Jin, B., Chow, C. W., & Saint, C. (2009). Adsorption of congo red by three Australian kaolins. Applied clay science, 43(3-4), 465-472.

Xu, M. C., Zhou, Y., & Huang, J. H. (2008). Adsorption behaviors of three polymeric adsorbents with amide groups for phenol in aqueous solution. Journal of colloid and interface science, 327(1), 9-14.

Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., & Xing, G. (2014). Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Applied Surface Science, 320, 674-680.

Yan, H., Yang, L., Yang, Z., Yang, H., Li, A., & Cheng, R. (2012). Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions. Journal of hazardous materials, 229, 371-380.

Yorgun, S., & Yıldız, D. (2015). Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 53, 122-131.

Yousef, R. I., El-Eswed, B., & Ala’a, H. (2011). Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chemical engineering journal, 171(3), 1143-1149.

Yu, M., Han, Y., Li, J., & Wang, L. (2017). CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chemical Engineering Journal, 317, 493-502.

Zhang, J., Li, Y., Zhang, C., & Jing, Y. (2008). Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. Journal of hazardous materials, 150(3), 774-782.

Zhang, Y., Song, X., Xu, Y., Shen, H., Kong, X., & Xu, H. (2019). Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. Journal of cleaner production, 210, 366-375.

Zhou, L., Zhou, H., Hu, Y., Yan, S., & Yang, J. (2019). Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. Journal of environmental management, 234, 245-252.

Published

25/02/2021

How to Cite

SOUSA, A. A. O. de; OLIVEIRA, T. S. .; AZEVEDO, L. E. C. de .; NOBRE, J. R. C. .; STEFANELLI, W. F. R. .; COSTA, T. A. P. de S. .; SILVA, J. P. S. da .; BARRAL , A. V. S. . Adsorption of the basic Malachite Green dye via activated carbon from the açaí seed. Research, Society and Development, [S. l.], v. 10, n. 2, p. e49110212871, 2021. DOI: 10.33448/rsd-v10i2.12871. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12871. Acesso em: 1 jan. 2025.

Issue

Section

Engineerings