Composite resin innovations: a literature review
DOI:
https://doi.org/10.33448/rsd-v10i3.13099Keywords:
Dental Materials; Antibacterials; Bulk fill.Abstract
The present study aimed to review the literature on the incorporation of substances to improve the mechanical, chemical and optical properties of composites. For this purpose, a search was performed in the PubMed database, using the descriptor "Composite Resins" combined through the Boolean operator AND with each of the following descriptors "Anti-bacterial Agents", "Bulk Fill", "Fillers" and "Photoinitiators ”. Eleven articles in English were selected. There are resins incorporated by bioglass (BV) that reduces the penetration of biofilm in marginal spaces of composites. Studies have shown that the integration of methacrylates and nanoparticles of amorphous calcium phosphate (NACP) favored the antibacterial action, as well as remineralization. Another author, supported the development of a self-repairing dental composite, as well as the incorporation of dimethylaminohexadecyl quaternary ammonium methacrylate (DMAHDM) that reduced the growth of biofilm without compromising its mechanical properties. Thus, there is a positive and effective evolution of resin composites, favoring improvements in physical and chemical properties. However, there is no unanimity as to which composite guarantees to eliminate all limitations.
References
Aljabo, A., Neel, E. A. A., Knowles, J. C. & Young, A. M. (2016). Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Materials Science and Engineering. 60, 285-292.
Andrade, K. C., Pini, N. I. P., Moda, M. D., Ramos, F. S. S., Santos, P. H., Briso, A. L. F. & Fagundes, T. C. (2020). Influence of different light-curing units in surface roughness and gloss of resin composites for bleached teeth after challenges. Journal of the mechanical behavior of biomedical materials. 102, 103458.
Bertolo, M. V., Moraes, R. C., Pfeifer, C., Salgado, V. E., Correr, A. R & Schneider, L. F. (2017). Influence of Photoinitiator System on Physical-Chemical Properties of Experimental Self-Adhesive Composites. Braz. Dent. J. 28(1), 35-39.
Borges, F. M. G. S., Rodrigues, C. C., Freitas, S. A. A., Costa, J. F. & Bauer, J. (2011). Avaliação da intensidade de luz dos fotopolimerizadores utilizados no curso de Odontologia da Universidade Federal do Maranhão. Revista Ciência Saúde. 13(1), 26-30.
Brandt, W. C, Toamselli, L. O., Correr-Sobrinho, L. & Sinhoreti, M. A. C. (2011). Can phenyl-propanedione influence Knoop hardness, rate of polymerization and bond strength of resin composite restorations?. Journal of dentistry. 39(6), 438-447.
Cadenaro, M., Antoniolli, F., Codan, B., Agree, K., Tay, F. R., Dorigo, E. S., Pashley, D. H. & Breschi, L. (2010). Influence of different initiators on the degree of conversion of experimental adhesive blends in relation to their hydrophilicity and solvent content. Denal materials. 26, 288-294.
Cardoso, K. A. O. R., Zarpellon, D. C., Madruga, C. F. L., Rodrigues, J. A. & Arrais, C. A. G. (2017). Effects of radiant exposure values using second and third generation light curing units on the degree of conversion of a lucirin-based resin composite. Journal of Applied Oral Science. 25(2), 140-146.
Cramer, N. B., Stansbury, J. W. & Bowman, C. N. (2011). Recent advances and developments in composite dental restorative materials. Journal of dental research. 90(4), 402-416.
Da Silva, F. J. V., Da Silva, E. L., Januário, M. V. S., Vasconcelos, M. G. & Vasconcelos, R. G. (2017). Técnicas para reduzir os efeitos da contração de polimerização das resinas compostas fotoativadas. Salusvita. 36(1), 187-203
Durner, J., Wellner, P., Hickel, R. & Reichl, F. X. (2012). Synergisticinteraction caused to human gingival fibroblasts fromdental monomers. Dental materials. 28(8), 818-823.
Ferracane, J. L. (2011). Resin composite—state of the art. Dental materials. 27(1):29-38.
Guimaraes, G. F., Marcelino, E., Cesarino, I., Vicente, F. B., Grandini, C. R. & Simões, R. P. (2018). Minimization of polymerization shrinkage effects on composite resins by the control of irradiance during the photoactivation process. Journal of Applied Oral Science. 26.
Jin, H, Miller, G. M., Sottos, N. R. & White, S. R. (2011). Fracture and fatigue response of a self-healing epoxy adhesive. Polymer. 52(7), 1628-1634.
Karbhari, V. M. & Strassler, H. (2007). Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials. 23(8), 960-968.
Khvostenko, D., Hilton, T. J., Ferracane, J. L., Mitchell, J. C. & Kruzic, J. J. (2016). Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dental Materials. 32(1), 73-81.
Laurent, P., Camps, J., De Méo, M., Déjou, J. & About, I. (2008). Induction ofspecific cell responses to a Ca(3)SiO(5)-based posteriorrestorative material. Dental materials. 24(11), 1486-1494.
Lin, J., Sun, M., Zheng, Z., Shinya, A., Han, J., Lin, H., Zheng, G. & Shinya, A. (2013). Effects of rotating fatigue on the mechanical properties of microhybrid and nanofiller-containing composites. Dental materials journal. 32(3), 476-4783.
Machado, A. L. S. (2018). Influência da incorporação de silicato de nióbio como carga inorgânica para uma resina composta. XXX Salão de Iniciação Científica, Universidade Federal do Rio Grande do Sul.
Manojlovic, D., Dramicanin, M. D., Miletic, V., Mitic-Culafic, D., Jovanovic, B. & Nikolic, B. (2017). Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: Comparative analyses of individual toxicity and combination effects in mixtures. Dental Materials. 33(4), 454-466.
Marson, F. C., Mattos, R. & Sensi, L. G. (2010). Avaliação das condições de uso dos fotopolimerizadores. Revista Dentística online-ano. 9(19), 15-20.
Oliveira, D. C. R. S., Souza-Junior, E. J., Dobson, A., Correr, A. R. C., Brandt, W. C. & Sinhoreti, M. A. C. (2016). Evaluation of phenyl- propanedione on yellowing and chemical-mechanical properties of experimental dental resin-based materials. Journal of Applied Oral Science. 24(6), 555-560.
Peralta, S. L., Dutra, A. L., Leles, S. B., Ribeiro, J. S., Ogliari, F. A., Piva, E. & Lund, R. G. (2019). Development and characterization of a novel bulk-fill elastomeric temporary restorative composite. Journal of Applied Oral Science. 27.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.
Reis, A. & Loguercio, A. D. (2007). Materiais dentários diretos: dos fundamentos à aplicação clínica. São Paulo: Santos Editora.
Silva, S. B. (2011). Resistência à fadiga e propensão a trincas em restaurações amplas de resina composta em dentes posteriores. Repositório Institucional, Universidade Federal do Santa Catarina.
Sinhoreti, M. A., Oliveira, D. C., Rocha, M. G. & Roulet, J. F. (2018). Light-curing of resin-based restorativ’e materials: an evidence-based approach to clinical practice application. Clin Dent Res. 15(1), 44-53.
Souza, M. B. A., Oliveira, O., Moda, M. D., Santos, P. H., Briso, A. L. F. & Fagundes T. C. (2017). OPPg o32-Influência de diferentes tipos de fotopolimerizadores e fotoiniciadores na microdureza e cor de resinas compostas. Archives of Health Investigation. 6.
Vaidyanathan, T. K., Vaidyanathan, J., Lizymol, P. P., Ariya, S. & Krishnan, K. V. (2017). Study of visible light activated polymerization in BisGMA-TEGDMA monomers with type 1 and type 2 photoinitiators using Raman spectroscopy. Dental Materials. 33(1), 1-11.
Wu, J., Weir, M. D., Melo, M. A. S. & Xu, H. H. K. (2015). Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. Journal of dentistry. 43(3), 317-326.
Wu, J., Weir, M. D., Melo, M. A. S., Strassler, H. E. & Xu, H. H. K. (2016). Effects of water-aging on self-healing dental composite containing microcapsules. Journal of dentistry. 47, 86-93.
Zhang, N., Ma, J., Melo, M. A. S., Weir, M. D., Bai, Y. & Xu, H. H. K. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. Journal of dentistry. 43(2), 225-234.
Yamamoto, E. T. C., Uemura, E. S., Maekawa, M. Y., Bagni, B. A., Rosa, R. G. S. & Destro, A. S. S. (2009). Avaliação da resistência flexural de resinas acrílicas polimerizadas por dois métodos. Revista Sul-Brasileira de Odontologia. 6(2), 147-154.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Lucas Dantas Rodrigues; Iury Alves Costa; Zidane Hurtado Rabelo; Lucas Lino de Oliveira; Rayanna Mayra Feitosa Monteiro; Henrique Cabral Sá; Maria Clara Ayres Estellita; Karlos Eduardo Rodrigues Lima; Marcelo Victor Sidou Lemos; Natasha Muniz Fontes; Raul Anderson Domingues Alves da Silva; Pedro Henrique Chaves Isaias; Talita Arrais Daniel Mendes; Ernanda Maria de Araújo Sales
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.