Logistic Bayesian model in the study of the growth of tomatoes
DOI:
https://doi.org/10.33448/rsd-v10i3.13198Keywords:
Nonlinear model; Growth curve; Bayesian methodology.Abstract
Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature.
References
Companhia Nacional de Abastecimento [CONAB] (2019). Tomate: Análise dos indicadores da produção e comercialização no mercado mundial, brasileiro e catarinense. https://www.conab.gov.br/institucional/publicacoes/compendio-de-estudos-da-conab/item/download/29586_4fe6dd2c9c6d1fa5e1cbc5f82061717d
Dossa, D.; Fuchs, F. (2017). Tomate: análise técnico-econômica e os principais indicadores da produção nos mercados mundiais, brasileiro e paranaense. Boletim Técnico. http://www.ceasa.pr.gov.br/arquivos/File/BOLETIM/Boletim_Tecnico_Tomate1.pdf
Food and Agriculture Organization of the United Nations [FAO] (2018). http://www.fao.org/faostat/en/#home
Ferreira, S. M. R., Freitas, R. J. S., & Lazzari, E. N. (2004). Padrão de identidade e qualidade do tomate (Lycopersicon esculentum Mill.) de mesa. Ciência Rural, 34(1), 329-335. 10.1590/S0103-84782004000100054
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science.
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calcualting posterior moments. In: Bernardo, J. M. et al. (Ed.). Bayesian statistics.
Martins Filho, S., Silva, F. F. e., Carneiro, A. P. S., & Muniz, J. A. (2008). Abordagem Bayesiana das curvas de crescimento de duas cultivares de feijoeiro. Ciência Rural, 38(6), 1516-1521. 10.1590/S0103-84782008000600004.
Moura, M. A.de. (1999). Crescimento pós-colheita de frutos de tomateiro cv. Santa Clara e do seu Mutante Firme. 1999. 86p. Dissertação (Mestrado em Agronomia) – Universidade Federal de Viçosa, Viçosa, MG.
Moura, M. L., Fogaça, C. M., Moura, M. A., Galvão, H. L., & Finger, F. L. (2004). Crescimento e desenvolvimento de frutos de tomateiro “Santa Clara” e do seu mutante natural “Firme”. Ciência e Agrotecnologia, 28(6), 1284-1290. 10.1590/S1413-70542004000600009
Nogueira, D. A., Safadi, T., & Ferreira, D. F. (2004). Avaliação de critérios de convergência para o método de Monte Carlo via Cadeias de Markov. Revista Brasileira de Estatística, 65(224), 59-88.
Pereira, J. M., Muniz, J. A., Safadi, T., & Silva, C. A. (2009). Comparação entre modelos para predição do nitrogênio mineralizado: uma abordagem bayesiana. Ciência e Agrotecnologia, 33, 1792-1797. 10.1590/S1413-70542009000700016
Pereira, M. C. T., Salomão, L. C. C., Silva, S. O. e., Sediyama, C. S., Couto, F. A. A., & Silva Neto, S. P. da. (2000). Crescimento e produção de primeiro ciclo da bananeira “Prata-Anã” (AAB) em sete espaçamentos. Pesquisa Agropecuária Brasileira, 35(7), 1377-1387. 10.1590/S0100-204X2000000700012
Prado, T. K. L. do., Savian, T. V., & Muniz, J. A. (2013). Ajuste dos modelos Gompertz e Logístico aos dados de crescimento de frutos de coqueiro anão verde. Ciência Rural, 43(5), 803-809. 10.1590/S0103-84782013005000044.
R development core team. R: a language and environment for statistical computing. 2019.
Raftery, A. L., & Lewis, S. (1992). Comment: one long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Statistical Science.
Reis, R. L., Muniz, J. A., Silva, F. F. e., Safadi, T., & Aquino, L. H. (2001). Comparação bayesiana de modelos com uma aplicação para o equilíbrio de Hardy-Weinberg usando o coeficiente de desequilíbrio. Ciência Rural, 41(5), 834-840. 10.1590/S0103-84782011000500016
Santiago, E. J. P., Freire, A. K. S., Cunha Filho, M., Moreira, G. R., Ferreira, D. S. A., & Cunha, A. L. X. (2020). Modelos não lineares aplicados a mortalidade e casos da COVID-19 no Brasil, Itália e mundo. Research, Society and Development. http://dx.doi.org/10.33448/rsd-v9i6.3561
Savian, T. V. et al. Análise bayesiana para modelos de degradabilidade ruminal. (2009). Ciência Rural, 39(7), 2169-2177. 10.1590/S0103-84782009000700033.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Patrícia Neves Mendes; Joel Auguto Muniz; Taciana Villela Savian; Thelma Sáfadi; Gabriel da Costa Cantos Jerônimo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.