Residual biomass from Amazon’s horticultural residues processing for mycelial growth and production of proteases by an edible mushroom species




Cupuaçu; Exocarp; Hydrolases; Lentinus crinitus; Lignocellulosic residues.


Horticultural residues can be used for growing mushrooms and obtaining proteolytic enzymes. The objective of this research was to evaluate the potential of lignocellulosic residues as substrates for mycelial growth and production of proteases by Lentinus crinitus. The matrix culture was prepared on potato dextrose agar (BDA) supplemented with yeast extract (YE) 0.5% (w/v). Vertical mycelial growth (VMC) was carried out in test tubes containing the following lignocellulosic residues supplemented with rice bran (FA): sawdust, (SER), açaí seed (SA) and pineapple exocarps (CAB), cupuaçu (CC) and tucumã (CT). Mycelial vigor was classified by the subjective method of notes. Proteolytic activity was determined using 1% (w/v) azocasein solution. The enzymatic characterization was carried out in the extract obtained from the cultivation of L. crinitus in the mixture of residues that favored the development of highly densified mycelium and significant production of proteases. Significant VMC was determined in SER+FA (0.40 cm/day). In CC+FA, L. crinitus developed a strongly densified mycelium. Significant proteolytic activity was determined in CC+FA (6.71 U/mL) and CT+FA (6.44 U/mL) cultures. In the extract of the culture in CC+FA there was a predominance of aspartic proteases that demonstrated an optimal activity at pH 5, at 50 ° C. These enzymes were strongly inhibited by Zn+2 and Mn+2. Residues from Amazonian horticulture used favor the production of mycelial mass and proteases by L. crinitus.


Aguilar, J. G., & Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103, 253-262.

Banerjee, G., & Ray, A. K. (2017). Impact of microbial proteases on biotechnological industries. Biotechnology and Genetic Engineering Reviews, 33(2), 119-143.

Barzkar, N., Homaei A., Hemmati R., & Patel, S. (2018) Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles, 22(3), 335-346.

Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Maccari Junior, A., & Ribani, R. H. Factors affecting mushroom Pleurotus spp. (2019). Saudi Journal of Biological Sciences, 26(4), 633-646.

Boratyński, F., Szczepańska, E., Grudniewska, A., Gniłka, R., & Olejniczak, T. (2018). Improving of hydrolases biosynthesis by solid-state fermentation of Penicillium camemberti on rapeseed cake. Scientific reports, 8(1), 1-9.

Braga, R. S. B., Brito, E. C. M., Souza, R. A. T., Teixeira, F. S., & Martim, S. R. (2020). Lentinus villosus Klotzsch (1833) AM 169: uma fonte natural e renovável de protease alcalina. Brazilian Journal of Development, 6(11), 85867-85883.

Brito E. C. M., Braga, R. S., Teixeira, M. F. S., & Martim, S. R. (2019). Produção e caracterização parcial de proteases aspárticas sintetizadas por Lentinus crinitus (L.) Fr. 1825 DPUA 1693 (Polyporaceae). Boletim Museu Paraense Emílio Goeldi, 14(3), 463-472.

Fonseca, T. R. B; Barroncas, J. F; & Teixeira, M. F. S. (2014). Production in solid matrix and proteases partial characterization of edible mushroom from amazon rain forest. Revista Brasileira de Tecnologia Agroindustrial, 8 (1), 1227-1236.

Fonseca, T. R. B., Silva, T. A., Alecrim, M. M., Cruz, R. F., Filho, & Teixeira, M. F. S. (2015). Cultivation and nutritional studies of an edible mushroom from North Brazil. African Journal of Microbiology Research, 9(30), 1814-1822.

Inácio, F. D., Ferreira, R. O., Araujo, C. A. V., Brugnari, T., Castoldi, R., Peralta, R. M., & Souza, C. G. M. (2015). Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus. BioMed Research International, 1-10.

Justina, M. D., Justina, M. B. D., & Skoronsk, E. (2018). O uso das enzimas na indústria de laticínios: uma breve revisão. Revista do Instituto Laticínios Cândido Tostes, 73(3), 172-184.

Leighton. T. J., Doi, R. H., Warren, R. A. J., & Kelln, R. A. (1973). The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. Journal Molucular Bioloogy, 76(1), 103-122.

Lu, T., Bau, T., & Ohga, S. (2017). Physiological study of the wild edible mushroom Leucocalocybe mongolica. Journal- Faculty of Agriculture Kyushu University, 62(1), 1-8.

Macedo, A. J. P., Kirsch, L. S., Palheta, R. A., Putzke, J., & Teixeira, M. F. S. (2011). Crescimento micelial de Ganoderma lucidum (Curt.: Fr.) P. Karst. em resíduos lignocelulósicos disponíveis na Amazônia. Caderno de Pesquisa, 23(3), 16-25.

Machado, A. R. G., Teixeira, M. F. S., Kirsch, L. S., Campelo, M. C. L., & Oliveira, I. M. A. (2016). Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi Journal of Biological Sciences, 23(5), 621-627.

Machado, A. R.G., Martim, S. R., Alecrim, M.M., & Teixeira, M. F. S. (2017). Production and characterization of proteases from edible mushrooms cultivated on Amazonic tubers. African Journal of Biotechnology, 16(46), 2160-2166.

Madhusankha, G. D. M. P., & Thilakarathna, R.C.N. (2021). Meat tenderization mechanism and the impact of plant exogenous proteases: A review. Arabian Journal of Chemistry, 14(2), 2-18.

Magalhães, A. A. S., Silva, T. A., Teixeira, M. F.S., Cruz, R. F., Filho, Silva, S. D., Gomes, D. M. D., & Pereira, J. O. (2019). Produção e caracterização de enzimas proteolíticas de Lentinus crinitus (L.) Fr. 1825 DPUA 1693 do bioma amazônico (Polyporaceae). Boletim Museu Paraense Emílio Goeldi, 14(3), 453-461.

Martim, S. R., Silva, L. S. C., Alecrim, M. M., Souza, B. C., Oliveira, I. M. A., & Teixeira, M. F. S. (2017). Proteases ácidas de cogumelo comestível da Amazônia para aplicabilidade industrial. Boletim Museu Paraense Emílio Goeldi, 12(3), 353-362.

Minitab, 2017. Minitab statistical software. LEAD Technologies, Inc. Version 18.1.

Neves, K. C. S. Produção de proteases coagulantes por espécies de Pleurotus em resíduos vegetais da Amazônia. 2014. 99f. Tese (Doutorado em Biotecnologia) - Universidade Federal Rural de Pernambuco, 2014.

Palheta, R. A., Vieira, J. N., Neves, K. C. S., & Teixeira, M. F. S. (2011). Crescimento micelial vertical de duas espécies de Pleurotus em resíduo agroindustrial da Amazônia utilizando planejamento fatorial. Caderno de Pesquisa, 23(3), 52-60.

Ravindran, R., Hassan, S.S., Williams, G. A., & Jaiswal, A. K, A. (2018) Review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering, 5(4), 2-20.

Rohan (2021). Proteases Market worth 2.21 Billion USD by 2021.

Siala, R., Frikha, F., Mhamdi, S., Nasri, M., & Kamoun, A. S. (2012). Optimization of Acid Protease Production by Aspergillus niger I1 on Shrimp Peptone Using Statistical Experimental Design. The Scientific World Journal.

Souza, R. A. T., Fonseca, T. R. B., Kirsch, L. S., Silva, L. S. C., Alecrim, M. M., Cruz, R. F., Filho, & Teixeira, M. F. S. (2016). Nutritional composition of bioproducts generated from semi-solid fermentation of pineapple peel by edible mushrooms. African Journal of Biotechnology, 15(12), 451-457.

Tavano, O. L., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety, 17, 412-436.

Verduzco-Oliva, R., & Gutierrez-Uribe, J. A. (2020). Beyond enzyme production: solid state fermentation (SSF) as an alternative approach to produce antioxidant polysaccharides. Sustainability, 12(2), 2-14.

Zhao, A., Li, Y., Leng, C., Wang, P., & Li, Y. (2013). Inhibitory effect of protease inhibitors on larval midgut protease activities and the performance of Plutella xylostella (Lepidoptera: Plutellidae). Frontiers in Physiology, 9, 1-9.



How to Cite

BATISTA, S. C. P. .; PRADO, F. B. .; BRITO, A. K. P. de .; COELHO, M. do P. S. de L. V. .; CASTILLO, T. A. .; MARTIM, S. R. .; TEIXEIRA, M. F. S. . Residual biomass from Amazon’s horticultural residues processing for mycelial growth and production of proteases by an edible mushroom species. Research, Society and Development, [S. l.], v. 10, n. 3, p. e35310313393, 2021. DOI: 10.33448/rsd-v10i3.13393. Disponível em: Acesso em: 19 jul. 2024.



Agrarian and Biological Sciences