Proposal for a computational modeling for crack propagation in bridge beams under cyclic loading

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13670

Keywords:

Bridges; Cyclic loading; Crack propagation.

Abstract

Steel bridges are normally subjected to random loads with different traffic frequencies. This way, steel bridges are structures of dynamic behavior and are subjected to fatigue failure process. After localizing and determine the amplitude of an existing flaw, its important predicts crack propagation and the convenient repair time. At this work, the fatigue crack propagation on steel beam bridges, has been studied under different spectrum of variable-amplitude loading. To study the fatigue crack growth was developed a computational code, using the Root Mean Square (RMS) and the Cycle-by-Cycle models. Different loads histories and initial crack length were considered input variables. This way was evaluating the dispersion of results of the expected structural life choosing different initial parameters.

References

Arias, A. R., & Bracarense, A. Q. (2015). Velocidade de propagação de trinca por fadiga de soldas subaquáticas molhadas: avaliação fora da água. Soldagem & Inspeção, 20(4), 403-411.

Chen, S. R., & Wu, J. (2010). Dynamic performance simulation of long-span bridge under combined loads of stochastic traffic and wind. Journal of Bridge Engineering, 15(3), 219-230.

Dantas, J. P. R. (2010). Investigação experimental da fadiga em lajes de pontes armadas com barras ou telas soldadas (Doctoral dissertation, Universidade de São Paulo).

Deus, E. P. D. (1997). Análise do processo de fraturamento em vigas de pontes de aço sob efeito de fadiga (Doctoral dissertation, Universidade de São Paulo).

Ding, Y., Wu, D., Su, J., Li, Z. X., Zong, L., & Feng, K. (2021). Experimental and numerical investigations on seismic performance of RC bridge piers considering buckling and low-cycle fatigue of high-strength steel bars. Engineering Structures, 227, 111464.

Garcez, M. R., Silva Filho, L. C. P., & Meier, U. (2012). Reforço de vigas de concreto armado com laminados de PRFC protendidos: parte 2: análise sob ação de carregamento cíclico. Revista IBRACON de Estruturas e Materiais, 5(4), 420-439.

Grzeskowiak, R. M., Freeman, L. R., Harper, D. P., Anderson, D. E., & Mulon, P. Y. (2021). Effect of cyclic loading on the stability of screws placed in the locking plates used to bridge segmental bone defects. Journal of Orthopaedic Research®, 39(3), 516-524.

Haghani, R., & Yang, J. (2016). Application of FRP materials for construction of culvert road bridges: manufacturing and life-cycle cost analysis. Rapport, (2016: 3).

Huang, X., Torgeir, M., & Cui, W. (2008). An engineering model of fatigue crack growth under variable amplitude loading. International Journal of Fatigue, 30(1), 2-10.

Komarovsky, A. A., & Haslach Jr, H. W. (2003). Physics of strength and fracture control: adaptation of engineering materials and structures. Appl. Mech. Rev., 56(5), B65-B66.

Kujawski, D. (2001). A fatigue crack driving force parameter with load ratio effects. International Journal of Fatigue, 23, 239-246.

Kwon, K., & Frangopol, D. M. (2010). Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data. International journal of fatigue, 32(8), 1221-1232.

Law, S. S., & Zhu, X. Q. (2004). Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. Engineering Structures, 26(9), 1279-1293.

Lu, P., Zhou, C., Huang, S., Shen, Y., & Pan, Y. (2021). Experimental Study on Mix Ratio Design and Road Performance of Medium and Small Deformation Seamless Expansion Joints of Bridges. Transportation Research Record, 0361198120984741.

Manhart, J., Kunzelmann, K. H., Chen, H. Y., & Hickel, R. (2000). Mechanical properties of new composite restorative materials. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 53(4), 353-361.

Pu, Q., Yang, S., Shi, Z., Hong, Y., & Zhou, Y. (2021). Fatigue Performance of an Innovative Steel–Concrete Joint in Long-Span Railway Hybrid Box Girder Cable-Stayed Bridges. Journal of Bridge Engineering, 26(2), 04020129.

Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de: em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Skorupa, M. (1998). Load interaction effects during fatigue crack growth under variable amplitude loading—a literature review. Part I: empirical trends. Fatigue & Fracture of Engineering Materials & Structures, 21(8), 987-1006.

Terasawa, T., Akimoto, M., Nishi, H., & Komuro, M. (2021). Cyclic Loading Tests on Seismic Retrofit of Reinforced Concrete Bridge Pier with Embedded Seismic Retrofit Rebar and Aramid Fiber-Reinforced Plastic Sheets Jacketing. In EASEC16 (pp. 781-790). Springer, Singapore.

Wang, W. Y., Li, P., Lin, D., Tang, B., Wang, J., Guan, Q., ... & Liu, W. (2020). DID Code: A Bridge Connecting the Materials Genome Engineering Database with Inheritable Integrated Intelligent Manufacturing. Engineering, 6(6), 612-620.

Published

27/03/2021

How to Cite

MELO, R. L. F.; MOURA FILHO, A. J. S. de .; MONTEZUMA, M. F. V. .; DEUS, E. P. de. Proposal for a computational modeling for crack propagation in bridge beams under cyclic loading. Research, Society and Development, [S. l.], v. 10, n. 3, p. e57510313670, 2021. DOI: 10.33448/rsd-v10i3.13670. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13670. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings