Analysis of time series of hot pixels in brazilian biomes using the Recurrence Plot method

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13925

Keywords:

Vegetation fires; Biomes; Recurrence Plot; Recurrence quantification analysis.

Abstract

Vegetation fires are complex processes that can have natural or man-made causes, and their effects on an ecosystem vary according to its sensitivity. The recurrence of fire outbreaks can affect the environmental balance and human health. Thus, it is necessary to monitor the occurrence of fire and understand its dynamics. In Brazil, monitoring is carried out via satellite, with which hot pixels are detected. This process is accomplished by the National Institute for Space Research (INPE). In order to investigate the temporal variability of fires in the Amazon, Cerrado, Caatinga and Atlantic Forest biomes, the Recurrence Plot method and the Recurrence Quantification Analysis, developed to study the nonlinear dynamics of time series, were used. So, the daily series of hot pixels in these biomes, generated from data made available by INPE, recorded between July/2002 and December/2019, were analyzed. The recurrence plots of hot pixels for the Amazon and Cerrado biomes showed that their dynamic systems of vegetation fires have parameters that vary slowly and are non-stationary. It was also observed a semi-periodic structure for the Caatinga biome and discontinuous for the Atlantic Forest biome, indicating, in the latter, sudden changes in the dynamics. Besides that, according to the Recurrence Quantification Analysis, the time series of vegetation fires in the Atlantic Forest biome presented the least predictability and the highest degree of disorder, while the Caatinga biome revealed a more predictable hot pixels time series with more stable dynamics.

References

Addo, P. M., Billio, M., & Guegan, D. (2013). Nonlinear dynamics and recurrence plots for detecting financial crisis. The North American Journal of Economics and Finance, 26, 416-435.

Afonso, L. C., Rosa, G. H., Pereira, C. R., Weber, S. A., Hook, C., Albuquerque, V. H. C., & Papa, J. P. (2019). A recurrence plot-based approach for Parkinson’s disease identification. Future Generation Computer Systems, 94, 282-292.

Arbex, M. A., Cançado, J. E. D., Pereira, L. A. A., Braga, A. L. F., & Saldiva, P. H. D. N. (2004). Queima de biomassa e efeitos sobre a saúde. Jornal Brasileiro de Pneumologia, 30(2), 158-175.

Archibald, S., Roy, D. P., van Wilgen, B. W., & Scholes, R. J. (2009). What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 15(3), 613-630.

Bastos, J. A. & Caiado, J. (2011) Recurrence quantification analysis of global stock markets. Physica A: Statistical Mechanics and its Applications, v. 390 (7), 1315-1325.

Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., ... & Pyne, S. J. (2009). Fire in the Earth system. science, 324(5926), 481-484.

Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50.

Costa, Y. T., & Rodrigues, S. C. (2015). Efeito do fogo sobre vegetação e solo a partir de estudo experimental em ambiente de cerrado. Revista do Departamento de Geografia, 30, 149-165.

da Silva, J. M., da Silva Araújo, L., Stosic, T., & Stosic, B. (2020). Análise de séries temporais de focos de calor em biomas brasileiros utilizando o Grafo de Visibilidade Horizontal. Research, Society and Development, 9(9), e308996276-e308996276.

de Santana, L. I. T., da Silva, J. M., da Silva Araújo, L., Moreira, G. R., & Stosic, T. (2020). Análise de quantificação de recorrência de preços brasileiros do milho, da soja e da carne de frango. Research, Society and Development, 9(10), e9979109461-e9979109461.

Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., & Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124(1), 90-108.

dos Santos, L., Barroso, J. J., de Godoy, M. F., Macau, E. E., & Freitas, U. S. (2014). Recurrence quantification analysis as a tool for discrimination among different dynamics classes: the heart rate variability associated to different age groups. In Translational recurrences (pp. 125-136). Springer, Cham.

Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1995). Recurrence plots of dynamical systems. World Scientific Series on Nonlinear Science Series A, 16, 441-446.

Facchini, A., Mocenni, C., Marwan, N., Vicino, A., & Tiezzi, E. (2007). Nonlinear time series analysis of dissolved oxygen in the Orbetello Lagoon (Italy). Ecological modelling, 203(3-4), 339-348.

Faustine, A., Pereira, L., & Klemenjak, C. (2020). Adaptive weighted recurrence graphs for appliance recognition in non-intrusive load monitoring. IEEE Transactions on Smart Grid, 12(1), 398-406.

Gontijo, G. A. B., Pereira, A. A., Oliveira, E. D. S., & Júnior, F. W. A. (2011). Detecção de queimadas e validação de focos de calor utilizando produtos de Sensoriamento Remoto. Simpósio Brasileiro de Sensoriamento Remoto, 15, 7966-7973.

Goswami, B., Marwan, N., Feulner, G., & Kurths, J. (2013). How do global temperature drivers influence each other?. The European Physical Journal Special Topics, 222(3), 861-873.

INPE - Instituto Nacional de Pesquisas Espaciais. (2021). Portal do Monitoramento de Queimadas e Incêndios. Recuperado de http://queimadas.dgi.inpe.br/queimadas/portal/informacoes/perguntas-frequentes

Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., & Rodriguez, D. A. (2011). The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters, 38(12).

Marwan, N., Thiel, M., & Nowaczyk, N. R. (2002). Cross recurrence plot based synchronization of time series. Nonlinear processes in Geophysics, 9(3/4), 325-331.

Marwan, N. (2003). Encounters with neighbours: current developments of concepts based on recurrence plots and their applications. Norbert Marwan.

Marwan, N. (2008). A historical review of recurrence plots. The European Physical Journal Special Topics, 164(1), 3-12.

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438(5-6), 237-329.

NSF. Complex Environmental Systems. (2003). Recuperado em http://www.nsf.gov/geo/ere/ereweb/ac-ere/acere_synthesis_rpt_summary.pdf

Rustici, M., Caravati, C., Petretto, E., Branca, M., & Marchettini, N. (1999). Transition Scenarios during the Evolution of the Belousov− Zhabotinsky Reaction in an Unstirred Batch Reactor. The Journal of Physical Chemistry A, 103(33), 6564-6570.

Soares, R. V., & Batista, A. C. (2007). Incêndios florestais: controle, efeitos e uso do fogo. Curitiba: Universidade Federal do Paraná.

Zbilut, J. P., & Webber Jr, C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots. Physics letters A, 171(3-4), 199-203.

Zbilut, J. P., Giuliani, A., & Webber Jr, C. L. (1998). Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Physics Letters A, 246(1-2), 122-128.

Published

04/04/2021

How to Cite

BARROS, V. da S.; SANTANA , L. I. T. de; SILVA , J. M. da; ARAÚJO , L. da S.; ALBUQUERQUE , C. R. .; STOSIC, T. Analysis of time series of hot pixels in brazilian biomes using the Recurrence Plot method . Research, Society and Development, [S. l.], v. 10, n. 4, p. e16010413925, 2021. DOI: 10.33448/rsd-v10i4.13925. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13925. Acesso em: 20 apr. 2021.

Issue

Section

Exact and Earth Sciences