Tubular chitosan device for use as prosthesis coating in vascular surgery





Chitosan; Tubes; Dip-coating.


Chitosan is a natural, biodegradable, non-toxic and biocompatible polymer, with characteristics such as a healing, hemostatic, antimicrobial agent, among others. Therefore, the aim of this study is to develop a tubular chitosan device for use as a prosthetic coating application in vascular surgery. The chitosan wires were obtained by the spinning method in a 2M sodium hydroxide coagulant solution (NaOH) and used in the form of wires and screens as a reinforcement structure to obtain the tubes. In order to characterize the tubes, optical microscopy, contact angle, degree of swelling, in vitro biodegradation, cytotoxicity and tensile strength were used. The results indicated that the tubes have uniformity over the entire length and as for the resistance to the trace, the tube reinforced with mesh presented greater deformation, while the tube reinforced with wire presented a higher value of rupture stress. The degree of swelling was higher in chitosan tubes with mesh. As for the biodegradation test, it was observed that the lysozyme samples showed greater loss of mass and the cytotoxicity test confirmed the cell viability of the material, concluding that the tubes reinforced with chitosan wires are promising for use in vascular surgeries.


Ávila, A., Bierbrauer, K., Pucci, G., López-González, M., & Strumia, M. (2012). Study of optimization of the synthesis and properties of biocomposite films based on grafted chitosan. Journal of Food Engineering, 109(4), 752-761.

Bona, J. C. d. (2007). Preparação e caracterização de filmes biodegradáveis a partir de blendas de amido com polietileno.

Cárdenas-Triviño, G., & Soto-Seguel, R. (2020). CHITOSAN COMPOSITES PREPARATION AND CHARACTERIZATION OF GUIDE TUBES FOR NERVE REPAIR. Journal of the Chilean Chemical Society, 65(3), 4870-4878.

Chen, J.-P., Kuo, C.-Y., & Lee, W.-L. (2012). Thermo-responsive wound dressings by grafting chitosan and poly (N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Applied Surface Science, 262, 95-101.

Conz, M. B., Granjeiro, J. M., & Soares, G. d. A. (2005). Physicochemical characterization of six commercial hydroxyapatites for medical-dental applicatons as bone graft. Journal of Applied Oral Science, 13(2), 136-140.

Crosio, A., Fornasari, B. E., Gambarotta, G., Geuna, S., Raimondo, S., Battiston, B., . . . Ronchi, G. (2019). Chitosan tubes enriched with fresh skeletal muscle fibers for delayed repair of peripheral nerve defects. Neural regeneration research, 14(6), 1079.

Da Silva, M. C., Leal, R. D. C. A., Da Silva, H. N., & Fook, M. V. L. (2019). Biodegradable suture threads as controlled drug delivery systems. Materials Research Innovations.

De Paoli, M. A. (2009). Degradação e estabilização de polímeros: Artliber São Paulo.

Duarte, M., Júlio, C., Martins, E., & Pezzin, S. (2004). Estudo da compactação a frio de poli (3-Hidroxibutirato)-Morfologia e resistência à compressão. Revista Matéria, 9(4), 386-391.

Gegel, N. O., Shipovskaya, A. B., Vdovykh, L. S., & Babicheva, T. S. (2014). Preparation and properties of 3D chitosan microtubes. Journal of Soft Matter, 2014.

Gomes, M., Azevedo, H., Malafaya, P., Silva, S., Oliveira, J., Silva, G., . . . Reis, R. (2008). Natural polymers in tissue engineering applications Tissue engineering (pp. 145-192): Elsevier.

Hendow, E. K., Guhmann, P., Wright, B., Sofokleous, P., Parmar, N., & Day, R. M. (2016). Biomaterials for hollow organ tissue engineering. Fibrogenesis & tissue repair, 9(1), 1-7.

Keane, T. J., & Badylak, S. F. (2014). Biomaterials for tissue engineering applications. Paper presented at the Seminars in Pediatric Surgery.

Lončarević, A., Ivanković, M., & Rogina, A. (2017). Lysozyme-induced degradation of chitosan: the characterisation of degraded chitosan scaffolds. Journal of Tissue Repair and Regeneration, 1(1), 12.

Macêdo, M. d. O. C., Macêdo, H., Silva, G., Silva, M., & Júnior, C. (2012). Estudo comparativo da modificação superficial de membranas de quitosana tratadas por plasma de oxigênio, nitrogênio e hidrogênio. Revista Eletrônica de Materiais e Processos, 7(2), 95-103.

Moghadas, B., Solouk, A., & Sadeghi, D. (2020). Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polymer Bulletin, 1-11.

Park, J., & Lakes, R. S. (2007). Biomaterials: an introduction: Springer Science & Business Media.

Peng, Z., Li, Z., Zhang, F., & Peng, X. (2014). In-vitro degradation and cytotoxicity of gelatin/chitosan microspheres for drug controlled release. Journal of Macromolecular Science, Part A, 51(8), 646-652.

Peter, M. G. (2005). Chitin and chitosan from animal sources. Polysaccharides and polyamides in the food industry: properties, production, and patents, 115-208.

Shenvi, S. S., Rashid, S. A., Ismail, A., Kassim, M., & Isloor, A. M. (2013). Preparation and characterization of PPEES/chitosan composite nanofiltration membrane. Desalination, 315, 135-141.

Shishatskaya, E., Khlusov, I., & Volova, T. (2006). A hybrid PHB–hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. Journal of Biomaterials Science, Polymer Edition, 17(5), 481-498.

Silva, J. M., Rodrigues, L. C., Silva, S. S., Reis, R. L., & Duarte, A. R. C. (2018). Engineered tubular structures based on chitosan for tissue engineering applications. Journal of biomaterials applications, 32(7), 841-852.

Sousa, W. J. B., Oliveira, L. C. C., Junior, A. G. B., Barbosa, R. C., Fook, M. V. L., Pedrosa, T. C., . . . Pimentel, C. A. (2018). Desenvolvimento de anel intravaginal de quitosana/gelatina/promestrieno. Revista Eletrônica de Materiais e Processos, 13(1).

Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini, A., & Juncker, D. (2013). Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology advances, 31(5), 669-687.

Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953.




How to Cite

MACÊDO, M. D. M.; LUCENA, B. de M.; CERQUEIRA, G. R. C. de; SOUSA, W. J. B. de .; PEDROSA, T. C.; BARBOSA, R. C.; AZEVEDO, A. C. S. de; SOUZA, M. F. de; OLIVEIRA, D. K. M. de .; FOOK, M. V. L. Tubular chitosan device for use as prosthesis coating in vascular surgery. Research, Society and Development, [S. l.], v. 10, n. 4, p. e25610414031, 2021. DOI: 10.33448/rsd-v10i4.14031. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14031. Acesso em: 15 may. 2021.